

CMfinder - A covariance model based algorithm

To appear, Bioinformatics

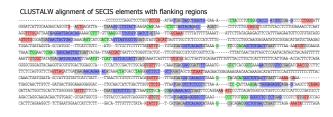
Zizhen Yao
Zasha Weinberg
Walter L. Ruzzo
University of Washington, Seattle

12/8/05

Approaches

- Align sequences, then look for common structure
- Predict structures, then try to align them
- · Do both together

12/8/05


Searching for noncoding RNAs

- CM's are great, but where do they come from?
- · A comparative genomic approach
 - Search for motifs with common secondary structure in a set of functionally related sequences.
- Challenges
 - Three related tasks
 - · Locate the motif regions
 - · Align the motif instances.
 - · Predict the consensus secondary structure.
 - Motif Search space is huge!
 - · Motif location space, alignment space, structure space.

12/8/05

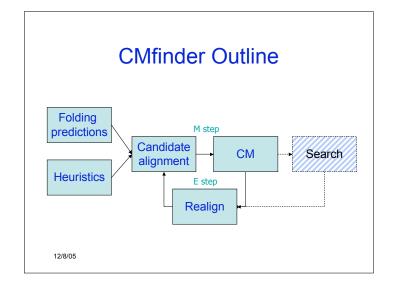
Pitfall for sequence alignment approach

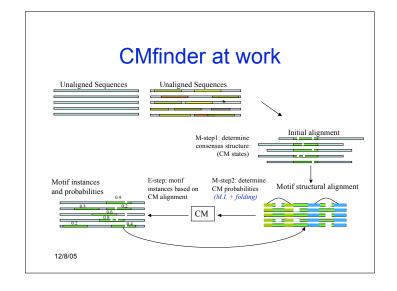
- Structural conservation ≠ Sequence conservation
 - Alignment without structure information is unreliable

12/8/05

Approaches

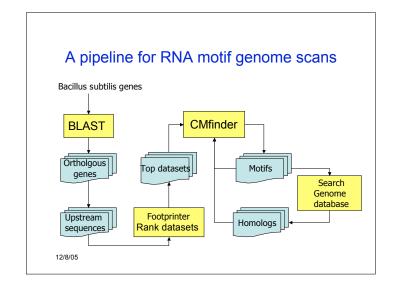
- Align sequences, then look for common structure
- Predict structures, then try to align them
 - single-seq struct prediction only ~ 60% accurate;
 exacerbated by flanking seq; no biologically-validated model for structural alignment
- · Do both together
 - Sankoff good but slow
 - Heuristic

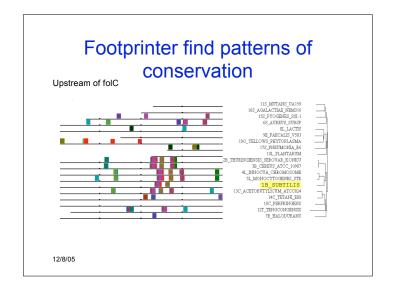

12/8/05

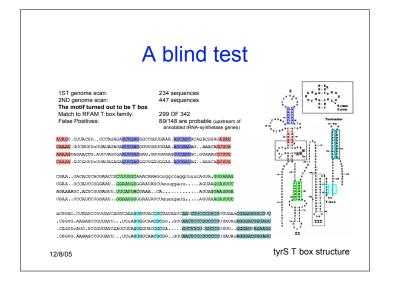

Design goal

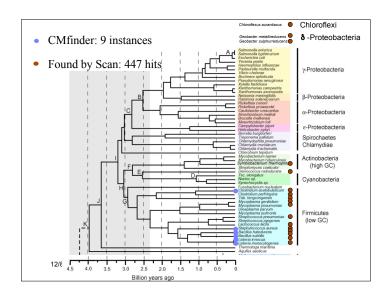
Search for RNA motifs in unaligned Sequences.

- · Perform Local alignment
- Exploit but do not require sequence conservation
- · Robust to inclusion of unrelated sequences.
- · Reasonably fast and scalable.
- Produce a probabilistic model of the motif that can be directly used for homolog search.


12/8/05






ŀ	² erfor	ma	nc	е	on	u	nali	gne	d seq	ue	nce	S
	Including	200	has	se i	flank	cino	regi	on di	stributed	l ran	doml	V
Including 200 base flanking region, distributed randomly												
between 3' and 5' side												
ID	Family	Rfam ID	#seqs	%id	length	#hp	CMfi nder	CW/Pfold	CW/RNAalifold	Carnac	Foldalign	ComRN/
1	Cobalamin	RF00174	71	49	216	4	0.59	0.05	0	X	-	0
2	ctRtNA_pGA1	RF00236	17	74	83	2	0.91	0.70	0.72	0	0.86	0
3	Entero_CRE	RF00048	56	81	61	1	0.89	0.74	0.22	0	-	0
4	Entero_OriR	RF00041	35	77	73	2	0.94	0.75	0.76	0.80	0.52	0.52
5	glmS	RF00234	14	58	188	4	0.83	0.12	0.18	0		0.13
6	Histone3	RF00032	63	77	26	1	1	0	0	0		0
7	Intron_gpII	RF00029	75	55	92	2	0.80	0.30	0	0		0
8	IRE	RF00037	30	68	30	1	0.77	0.22	0	0	0.38	0
9	let-7	RF00027	9	69	84	1	0.87	0.08	0.42	0	0.71	0.78
10	lin-4	RF00052	9	69	72	1	0.78	0.51	0.75	0.41	0.65	0.24
11	Lysine	RF00168	48	48	183	4	0.77	0.24	0	X	-	0
12	mir-10	RF00104	11	66	75	1	0.66	0.59	0.60	0	0.48	0.33
13	Purine	RF00167	29	55	103	2	0.91	0.07	0	0	-	0.27
14	RFN	RF00050	47	66	139	4	0.39	0.68	0.26	0	-	0
15	Rhino_CRE	RF00220	12	71	86	1	0.88	0.52	0.52	0.69	0.41	0.61
16	s2m	RF00164	23	80	43	1	0.67	0.80	0.45	0.64	0.63	0.29
17	S_box	RF00162	64	66	112	3	0.72	0.11	0	0		0
18	SECIS	RF00031	43	43	68	1	0.73	0	0	0	-	0
19	Tymo_tRNA-like	RF00233	22	72	86	4	0.81	0.33	0.36	0.30	0.80	0.48
				Avera	ige Accui	acy:	0.79	0.36	0.28	0.17	0.60	0.19
Average Specificity:					0.81	0.42	0.57	0.83	0.60	0.65		
Average Sensitivity:						0.77	0.36	0.23	0.13	0.61	0.17	

heavy computation cost. RNAalifold, Carnac and ComRNA do not predict any consensus structure in many cases, so the corresponding accuracies are 0.)

Genome Scans in Progress

- Firmicutes
 - e.g. anthrax
- Actinobacteria
 - source of penicillin & most other antibiotics
- Cyanobacteria
 - Primary producer of oxygen
- Gamma-proteobacteria
 - e.g. E. coli.

12/8/05

Preliminary results of genome scan

Top 115 datasets (some are redundant)
13 T box, 22 riboswitches, 30 ribosomal genes
RNase P, tRNA, CIRCE elements and other DNA binding sites

Gene	#motif	#hits	RFAM_fam	#Rfam_seed	#Rfam_full	#TP	specificity	sensitivity
metK	13	150	S_box	71	151	145	0.967	0.960
ribB	9	106	RFN	48	114	97	0.915	0.851
folC	9	447	T_box	67	342	299	0.669	0.874
xpt	14	106	Purine	37	100	97	0.915	0.970
glmS	16	33	glmS	14	37	33	1.000	0.892
thiA	16	305	тні	237	366	305	1.000	0.833
ykoY	10	34	yybP-ykoY	74	127	33	0.971	0.260

12/8/05