
CSE 527 Notes: Lecture 13 11/09/2005, More HMMs 
 
Ahrim Youn (based on earlier notes by Raphael Hoffman, Martha Mercaldi, and online 
resources by Narada Warakagoda) 
 
 
Hidden Markov Models 
 
Hidden Markov Models (HMM) consist of the following: 
         States: 1,2, ... 
         Paths: sequences of states  1 2( , ,..., )

n
! ! ! !=  

         Transition probability:  1Pr( | )
kl i i
a l k! !

"
= = =   

         Emission probability:   ( ) Pr( | )
k i i
e b x b k!= = =  

If we assume that our data was generated by this model, our observed data would be only the 
emission sequence. Unlike in our previous example, where we identified each state with our 
current nucleotide (A, C, G or T), we now don't know exactly in what state we are in 
anymore. Thus, the state/transition sequence can be regarded as hidden data. 
 
 
Example Let's regard the sequence of rolling a die in a casino. Our opponent cheats from 
time to time and exchanges the fair die with a loaded die. Our task is to determine the fair 
die/loaded die sequence by only looking at the sequence of die rolls. Our model could look like 
this. 
 

 
 
Our (observed) emission sequence and (hidden) transition sequence: 
                   Rolls 65116645313265124563666 
                   Die   LLLLLLFFFFFFFFFFFFLLLLL 
 
In Computational Biology we are interested if a sequence, e.g. CGCG, came from C+G+C+G+ 
or C_G_C_G_ or C+G_C+G_ or ... We don't know the state sequence !  (hidden data). 
However, we can calculate the joint probability of a given path !  and an emission sequence x: 
  

10

1

Pr( , ) ( )
i i i i

n

i

i

x a e x a! ! ! !!
+

=

= "  

 
Alternative questions that arise in this context are: 
  1. What is the most probable (single) path in our model, if we are given an emission seq.  
      x? that is, what is *! ? 
                * argmax Pr( , )x!! !=  



 
   2. What is the sequence of most probable states, if we are given an emission sequence x? 
       that is, what is ˆ

i
! ? 

             ˆ argmax Pr( | )
i k i

k x! != =  
We can solve the first question by applying the Viterbi algorithm. 
 
 
The Viterbi Algorithm 
The Viterbi algorithm computes * argmax Pr( , )x!! != . Hence, it is useful if one path 
dominates all the others. However, if this is not the case, i.e. many good paths are almost 
equally likely, then *Pr( , )x !  could be very low and other approaches may be preferable. 
One key problem to finding it is that there are exponentially many paths. However, the 
Viterbi algorithm is a dynamic programming approach and is computationally efficient. 

 In order to facilitate the computation we define an auxiliary variable,  

1 2 1

1 2 1 1 2
, ,...,

( ) max Pr( , ,..., , , , ,..., )
i

l i i i
v i l x x x

! ! !
! ! ! !

"

"
= =  

which gives the probability of the most probable path emitting  
1 2
, ,...,

i
x x x    and ending in state l.  

It is easy to observe that the following recursive relationship holds.  

1 ,( 1) ( ) max( ( ) )
l l i k k l

k

v i e x v i a
+

+ = !    (*) 

 where, 
1     if =Begin state

(0)
0     otherwise

l

l
v

!
= "
#

 

 

To retrieve the state sequence, we need to keep track of the argument that maximized Eq.(*), for 
each i and l.   We always keep a pointer to the “winning state” in the recursion. Finally the state *

l  
is found where * argmax ( )

l

l

l v n=  and starting from this state, the sequence of states is back-

tracked as the pointer in each state indicates.This gives the required sequence of states. 
 



 There is one important issue when implementing this algorithm: The emission probabilities 
and transition probabilities are typically less than 1. Thus we end up multiplying thousands of 
fractions which are below 1, which often causes floating point underflows. One solution to 
this problem is to use logarithms. 
 
 
 
Shortcomings of Viterbi 
In the following figure, the most probable path goes through 5, but most probable state at 2nd step 
is 6. (Viterbi is not the only interesting answer.) 

 
 
 
 
Forward and backward algorithm 

We want to calculate the probability of the observed sequence, 1 2Pr( , ,..., )
i

x x x . We can calculate 
this quantity using simple probabilistic arguments. But this calculation involves number of 
operations which is exponential w.r.t i. This is very large even if the length of the sequence, i is 
moderate. Therefore we have to look for an other method for this calculation. Fortunately there 
exists one which has a considerably low complexity and makes use an auxiliary variable,  ( )kf i   
called forward variable. 

The forward variable is defined as the probability of the partial observation sequence
1 2
, ,...,

i
x x x   

when it terminates at the state k. Mathematically,  

 1 2( ) Pr( , ,..., , )k i if i x x x k!= =  

Then it is easy to see that following recursive relationship holds.  

 1 ,( 1) ( ) ( )l l i k k l

k

f i e x f i a
+

+ = !  

Using this recursion we can calculate the required probability,  

,0Pr( ) Pr( , ) ( )k k

k

x x f n a
!

!= =" "
uv

r v uv
 

 The complexity of this method, known as the forward algorithm is linear w.r.t i whereas the 
direct calculation mentioned earlier, had an exponential complexity. 



In a similar way we can define the backward variable ( )
k
b i  as the probability of the partial 

observation sequence 
1
,...,

i n
x x
+

, given that the current state is k. Mathematically ,  

1( ) Pr( ,..., | )
k i n i
b i x x k!

+
= =  

 As in the case of ( )kf i there is a recursive relationship which can be used to calculate 

( )
k
b i efficiently.  

1 ,( ) ( ) ( 1)
k l i l k l

l

b i e x b i a
+

= +!  

 where,  

 ,0( )
k k
b n a=  

Further we can see that,  

Pr( , ) ( ) ( )
Pr( | )

Pr( ) Pr( )

i k k
i

k x f i b i
k x

x x

!
!

=
= = =

r
r

r r  

Therefore this gives a way of calculating the posterior probability of a state i being k.  

Also this gives another way to calculate Pr( )x
v

, by using both forward and backward variables :  

Pr( ) ( ) ( )k k

k

x f i b i=!
v

 

Posterior Decoding 

Terminology— posterior: based on probability after seeing data; 
                          prior: based on probability before seeing data 
If the most likely path accounts for less than half of the probability, posterior decoding may 
make sense. 
ˆ argmax Pr( | )
i k i

k x! != =
v  

Notice that because transitions are not taken into account, it is possible that this sequence of 
states isn’t even legal in the model; see example under “Viterbi shortcomings” again.. 



 
Alternative question : given some function g(k) on states, what’s its expectation.  E.g., the 
probability of the “+” sub-model in the CpG HMM is E(g(k)) where g(k)=1 iff k is a “+” state. 
( | ) Pr( | ) ( )i

k

G i x k x g k!= = "#
v v

 

  
  
CpG Example 
 
Data: 41 human sequences, totaling 60 kbp, with 48 CpG islands with an average length of 
about 1 kbp each. 
 
Viterbi: Found 46 of the 48 islands, plus 121 false positives. With the addition of a post 
processing step applied to the data which merged any two islands that were within 500bp of 
each other and then deleted short islands (<500 bp), Viterbi still found 46/48, but with only 
67 false positives. 
 
Posterior Decoding: Found the same 46 of the 48 islands and 276 false positives. With the 
post processed data, posterior decoding still found 46/48 islands, but only 93 false positives. 
There was little difference between the two methods in this example (with Viterbi being 
slightly better), but we’ll see cases presently where it makes a much bigger difference. 
 
Training of probability parameters 
(For now we defer the question of how to decide on the structure of a model, and ask how, 
given a structure, to identify appropriate parameters.) 
Given a model topology and independent training sequences, we want to find emission 
probabilities for each state and transition probabilities for each transition. 
If the path of states through the HMM is known, we can use Maximum Likelihood 
Estimation (MLE). 
  

( )

( )
kl

count k l
a

count k anywhere

!
=

!
 

( )
k
e b = a similar ratio, the fraction of the time that you’re in state k that you emit b. 
If !  is hidden, use Expectation Maximization (EM) to estimate the state sequences and 
parameters in an iterative loop:  Given !  estimate the parameters , then with that parameter, 
estimate! , and repeat until results converge. 
 
If you’ve got a model with 8 states, for each state you’d need 8 transition probabilities and 4 
emission probabilities. These 8*12 parameters are quite many, so even for this small a state 
diagram we require a fair amount of training data. 



 
 
Viterbi Training 
Make your initial parameter estimates (either randomly or preceded if you have strong prior 
knowledge of what they might look like). Calculate the Viterbi path for each training 
sequence and from that count the transitions and emissions, thereby creating a new parameter. 
Use this new parameter and recalculate the Viterbi path for each training sequence. Iterate 
until parameter stops changing (or change very little). 
  Advantages: 
      • Fast and simple 
      • Viterbi path is discrete and therefore this algorithm will converge 
  Disadvantages: 
    • May converge only on a local optimum, not the global one. 
    • Not actually maximizing the likelihood we want. 
Regarding this last disadvantage, we are looking only at the most probable paths, not at all 
paths. Also, we are not getting any parameter estimates along paths that do not occur in the 
training data. 
 


