Normalization of Microarray Data

Paul Gauthier
Michael Ringenburg
CSE527 - 12/12/03
Outline

- Sources of error in microarray experiments
- cDNA array normalization
 - Global, linear and non-linear
 - Dye swapping, print tip effects
 - Evaluation of approaches
- Variance stabilization
Sources of Error

Fundamental
- Gene isoforms
- Probe specificity (3')
- MM probe masks legitimate signal
- Incorrect probes
- Inconsistent results: cDNA/Oligo/Northern

Normalization
- Dye color variation
- Print-tip effects
- Scanning variation
- Slide preparation
- Wet-lab variables
- Variance ~ expression

Applicable
cDNA Microarrays

- cDNA array output:
 - Per gene: (log R, log G)
 - Fold change: \(M = \log(R/G) \)
 - Mean log-intensity: \(A = \frac{1}{2} \log(R/G) \)

- Goal: correct for experiment differences
 - Dye specific issues, or
 - Sample related

- Control genes are constantly expressed:
 - You expect/want: \(M = \log(R/G) \sim 0 \)
Global Normalization

- \(M^* = M + c = \log(kR/G) \)
- \(c = \text{median}(M) \)
- Median is robust estimator if most genes are constantly expressed
Linear Normalization

- \(M^* = M + bA + c = \log(jA k R/G) \)
- Compute \(b, c \) with best least-squares fit
 - Fit control genes or
 - Use robust fitter
- Park, et al.
Non-Linear Normalization

- \(M^* = M - c(A) \)
 - \(= \log(k(a) R/G) \)
- \(c(A) \) fit by lowess
- Lowess:
 - Robust, locally line scatter-plot smoother
- Yang, et al.
Special Cases
(Yang, et. al.)

- Dye swap experiments
 - Duplicate experiments \((M, A, M', A')\), dyes swapped
 - Can assume \(c \sim c'\)
 - Verify with control genes
 - Compute \(c\) using: \(M'' = 1/2(M + M')\), \(A'' = 1/2(A + A')\)

- Print tip effects
 - Different slides sections use different print tips
 - Compute separate \(c_i\) for each of the \(i=1..p\) print tips
Comparison of Approaches (Park, et al.)
Variance Stabilization

- Previous methods discussed normalization.
- Huber et. al. and Geller et. al. add another goal — variance stabilization.
- Construct a difference statistic Δh whose variance does not depend on the mean.
 - Detecting differential expression: Let Δh replace M.
- Concentrate on the method of Huber et. al.
Motivation

- In real microarray data, the variance depends on the mean intensity.
- If variances equalized, can compare genes and decide which differences are most significant.
The Model

- Assume we can normalize with a linear model
 - \(y_{ik} \rightarrow \hat{y}_{ik} = o_i + s_i y_{ik} \)
 - parameters \(o_2, \ldots, o_d \) and \(s_2, \ldots, s_d \)

- Assume variance has quadratic dependence on mean.
 - \(v(u_k) = (c_1 u_k + c_2)^2 + c_3 \)
Model

- Applying the variance stabilization technique from Tibshirani '88
 - $h(y) = g \text{arsinh}(a + by)$
 - $g = c_1^{-1}$, $a = c_2 / \sqrt{c_3}$, $b = c_1 / \sqrt{c_3}$

- Combine with the normalization model
 - Omit scaling factor g
 - $y_{ik} \rightarrow h(\hat{y}_{ik}) = \text{arsinh}(a + b (o_i + s_i y_{ik}))$
Model

- Set $a_i = a + b o_i$ and $b_i = b s_i$
 - Get $h(\tilde{y}_{ik}) = \text{arsinh}(a_i + b_i y_{ik})$
- $\Delta h_{k;ij}$ is our difference statistic
- Estimate parameters with EM/MLE
 - Estimate parameters from genes not differentially expressed
 - Estimate genes not differentially expressed from parameters
- Iterate
Results

Lowess Normalization

Variance Stabilization
Conclusions

- Microarray data has many sources of error.
- Some can be corrected by normalization and variance stabilization, some cannot.
- Important question not addressed in these papers: how does the choice of normalization method affect the results of clustering, classification, et cetera?