Case study, continued

Sporulation summary

What they did

- Measured mRNA expression levels of all 6200 yeast genes at 7 times points in a (loosely synchronized) sporulating yeast culture
- Plus some more standard tests and controls

What they learned

- 3-10X increase in number of genes implicated in various subprocesses
- Several subsequently verified by direct knockouts

Where computation fits in

- Automated sample handling
- Image analysis
- Data storage, retrieval, integration
- Visualization
- Clustering
- Sequence analysis

More on computation

- Similarity search – given a loosely defined sequence “motif”, e.g. a transcription factor binding site, scan genome for matches
 - Which genes have MSE element?
 - e.g. weight matrix models, Markov models
- Motif discovery – given a collection of sequences presumed to contain a common pattern, e.g. a transcription factor binding site, find and characterize it
 - What motifs are common to early-middle genes?
 - e.g. MEME, Gibbs sampler, footprinter, …
- Finding groups of sequences that plausibly contain common sequence motifs
 - e.g. clustering (co-varying because co-regulated?)

Chu’s “supervised” clustering

- Hand picked ~40 prototype genes
 - Significant variation in data set
 - Known function
 - Hand segregated into 7 groups (“early”, …)
 - Assigned all others to “nearest” group
 - Based on Pearson correlation to average of prototypes
 - Ordered within groups by correlating to neighboring groups

Pearson correlation
Pearson \[n \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \]

Larger \(\rightarrow \) more similar

Euclidean distance

\[\text{Euclidean} := \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \]

Smaller \(\rightarrow \) more similar

Critique

+ Informed clustering
 Knockout verification

- Subjective, maybe counter to data
 “Peak time” simplistic
 Reproducibility? Replicatability?
 “Normalize” data?

Other analysis possible

- Lagged correlation
 Correlation other then Pearson’s
 Other approaches to clustering

Principle component axis is line with greatest variance in data

Used in statistical analysis

Turns out that two axis (variables) define most variation in data

No clear division in data (not easily divided into 7 groups)

Projection onto 3 axes gives more distinct groupings

Homework

Choose paper on microarrays, read it, try to think about issues (i.e. analysis, other research, etc). What surprised you about this paper? Send a paragraph of interesting observations via email by Wednesday or Thursday.

Clustering

Traced back to Aristotle, big push in 1950’s

Ways to use

- Cluster genes
 Those clustered together may be linked
- Cluster experiments
 Drug/tumor function may be separated into groups

Both

Exploratory technique

Used to generate, rather then test, hypothesis

Many methods

- All find clusters, some more applicable then others
- How to compare methods?

Hierarchical clustering

(Dis)similarity measure individuals and groups
Each point a gene

At every stage of algorithm, merge two most similar “pairs”
Gives a tree structure

Height indicates similarity between “pairs”

Most similar pair
comparison (single link)
- - - Least similar pair
comparison (complete link)
Average link can also be used