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1 Forward and Backward Markov Chains

A (first order) Markov chain generates a sequence by randomly choosing the next character based on the
previous character. If we choose to look at the sequence in the order of it being produced from left to right,
we have a forward Markov chain. If we think of the generating process as going from right to left (so that
the last character produced will be the first character in the resulting sequence) we have a backward Markov
chain.

Despite the one-directional nature of producing a Markov chain, it is still true that the probability of
having a certain character in the i*" position depends on the character in both the i — 1 and the 4 + 1
positions. This will be shown first with an example, and then more formally.

1.1 Example

Consider a first-order one-directional Markov chain moving from left to right generating the sequence ...
CGG ... Imagine that you forgot what the middle character was: ... COG ...

Suppose you want to figure out what the missing character was, and you don’t have time to re-run the
Markov chain on the whole string. To do this correctly, you need to consider both the character before and
the character after the missing location.

For example, suppose the transition probability matrix is:
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Then, we know that the missing character would have to be either a T or a G, since those are the only
characters that can come after a C. If the character had been a T, then the following character would also
have to be a T. But, the following character is a G. So, the missing character must have been a G as well.

This is an extreme case. In a more realistic distribution, we would only be able to derive the probabilities
of G or T being the missing character. In this example,

PI‘(AXz =G | Xi—l = C, Xz'+1 = G)
PI'(X,’ =T | X,;_l = C,XH_l = G) = 0
so we can be certain that G is the missing character.

Also, notice that these probabilities are different from what we get when considering only the character
to the left. These probabilites can be read from the transition probability matrix.

Pr(X; =G| X;-1=C) = 05



1.2 Formal Approach

Let X;, X,n, X, represent the three nucleotides, where X; and X, are known (in the previous example,
X;=C and X,=G), and X,, is unknown.

We are interested in the probability distribution Pr(X; = X,,, | X;-1 = Xi, X;41 = X,) In particular, we
are asking whether Pr(X; = X, | Xi1 = X1, X1 = X)) = Pr(X; = X | Xim1 = Xi). We will use the
fact that

Pr(Xop1 = Xo | Xio1 = X0, X = X)) = Pr( X1 = Xop | Xi = X))

which is the definition of a first order Markov chain.

PI‘(AXz = Xm | Xi—l = Xl;Xi+1 = Xr)
Pr(Xi = X, Xio1 = X1, Xip1 = Xo)
Pr(X;_1 = X;, Xip1 = X;)
Pr( X1 =X, | Xic1 = X1, Xi = X)) Pr(Xio1 = X0, X = X))
Pr(X; 1 =X, Xiy1 = X,)
Pr(Xit1 =X, | Xi = X)) Pr(Xic1 = X0, Xi = X))
PI‘(XZ'_l = XlaXz'+1 = XT.)
PI‘(X»H_l = Xr | Xz = Xm) PI‘(X, = Xm | Xi—l = Xl) PI‘(Xz'_l = Xl)
PI‘(Xz'_l = XlaXz'-l—l = XT)
PI“(XH_l = XT. | Xz = Xm) PI‘(XZ = Xm | Xi—l = Xl) PI‘(Xi_l = Xl)
Sy Pr(Xip1 = X, [ X; =Y)Pr(X; =Y | X; 1 = X)) Pr(X; 1 = X))
Pr(Xip1 = X, | Xi = X)) Pr(X; = X | Xi1 = X))
Sy Pr(Xip =X, | X; =Y)Pr(X; =Y | X;_; = X))

where the sum is taken over all possible values Y that the missing character could be.

So PI‘(XZ = Xm | Xi,1 = leX'H»l = Xr) depends on PI‘(XH,l = XT | XZ = Xm) as well as PI‘(Xl =
Xm | Xic1 = Xi). (Note: Pr(X;_; = X;) and Pr(X;_; = X;, P;y1 = X,) are fixed because X; and X,
are known.) Hence, the probability distribution for a given character depends both on the probability of
transitioning to it, and the probability of transition away from it. In general,

Pr(X;=Xp | Xi1 =X, X510 = X;) #Pr(X; = X | Xy1 = X)),
In the earlier example, for X,,, =T,
Pr X1 =X, | Xi =Xp) =Pr(Xi;1 =G | X;=T) =0
which makes the numerator in the above expression 0, hence
PrX;=Xpm | Xic1 =X, Xi1=X,) =Pr(X;p1 =T | Xica =C, X341 =G) =0
while
PrX; =X, | Xio1=X) =Pr(X; =T | X;-1=C) =05

and this provides our counterexample.
In the above derivation, only the properties of probability and the forward Markov chain are used. There
is nothing else more used.

2 Reversibility

It can be shown that the reverse of a Markov chain is again a Markov chain (see reference 1) The forward
and reverse Markov chains are indistinguishible if the transition probability matrix is symmetric. In this
case, the Markov chain is said to be “reversible”



Further, the relationship between the forward and backward transition probabilities can be derived.
For a stationary discrete time Markov chain X (t) with forward transition probability

Pji =Pr(X(t) =i | X(t—-1) =)
for any ¢, and stationary distribution
pi = Pr(X(t) =)

for any t, the backward transition probability Pj; = Pr(X(t) = j | X(¢ + 1) = 4) of the backward Markov
chain is determined by

Pi; = p;iPji/pi.

This equation says that knowing the forward transition probabilities and the stationary distribution of a
forward Markov chain determines everything about the backward transition probabilities of the reversed
chain.

3 Nonreversible Chains and Entropy Production

Whether a Markov chain is reversible or not has everything to do with whether the pairwise distribution
matrix is symmetric. If it is nonsymmetric, then the Markov chain is nonreversible. Since we know that our
biological data does not, in general, produce a symmetric pairwise probability distribution, we know that
the Markov chains that we use are nonreversible.

The term “nonreversible” is used because there is an entropy production that can be detected, and used
to determine in which direction the chain was run (see Reference 2).

4 Conclusions

It is too strong a statement to say that the i** character does not at all depend on the (i + 1)!* character.
However, for a Markov chain with a nonsymmetric pairwise distribution (such as the Markov chains used in
computational biology), the Markov chain has a nonreversible nature.
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