
Lecture 12

Maximum Subsequence Problem

February 15, 2000
Notes: Mathieu Blanchette

12.1. Scoring Regions of Sequences

We have studied a variety of methods to score a DNA sequence so that regions of interest obtain a high
score. For example, Section 11.4.2 suggested codon bias as a means for finding coding regions. If

�
is a

codon, the score associated with
�

is �������
�
	�
� , where

��
is the frequency of

�
in known coding regions

(in the correct reading frame), and
���

is the frequency of
�

in noncoding regions (usually taken as the
background distribution).

Notice that our goal is to identify new coding regions, but the method requires that we already know
some coding regions in order to estimate

���
. There are a few easy ways one can identify a subset of

likely coding regions. First, one could look for long open reading frames (ORFs), that is, long contiguous
reading frames without STOP codons. Since 3 of the 64 codons are STOP codons (see Table 1.1), in random
sequences one would expect a STOP codons every 64/3 triplets, i.e., every 64 bases, if codons are distributed
uniformly. Since most genes are at least hundreds of bases long, very long ORFs are likely to be coding
regions. This method will work well if we assume that the new genome contains no introns (or at least many
very long exons), and if the codon distribution in long genes is similar to that in all genes, so that we can
use it to estimate

���
. Another easy way to find a training set of coding sequences is by sequence similarity:

compare the sequence of interest with a genome in which many genes are known, and extract the regions
with high sequence similarity to known genes.

Then, if we assume that different triplets in the sequence are independent, we would like to find contigu-
ous stretches of triplets with high total score (and thus with high log likelihood ratio). These regions would
be good candidates for coding regions, to be subjected to further testing.

Another relevant question is in which reading frame to look for codons. There are 6 possible reading
frames: 3 on each of the 2 strands of DNA. When looking for coding region, one would search for high
scoring regions in each of these 6 reading frames.

12.2. Maximum Subsequence Problem

We can distill the following general computational problem from the preceding discussion. We are given
a sequence ������� � ������������� of real numbers, where ��� corresponds to the score of the � th element of the
sequence. The problem is to find a contiguous subsequence � � ��� ��� � �����������"! that maximizes � �$# � ��� �%#
&�&�& # �"! . We will call this a maximum subsequence. Note that, if all � � ’s are nonnegative, the problem is

55

LECTURE 12. MAXIMUM SUBSEQUENCE PROBLEM 56

not interesting, since the maximum subsequence will always be � � ��� � ����������� � , so the interesting case is
when some of the scores are negative.

The following algorithm for finding a maximum subsequence was given by Bates and Constable [1] and
Bentley [2, Column 7].

Suppose we already knew that the maximum subsequence
�

of � � ��� � ������������� has score � . How can
we find the maximum subsequence of � � ��� � ������������� ����� � � ? If ��� is included in

�
, then it is easy: if

��� � ����� , we will add ��� to
�

, and if not, we will leave
�

unchanged. But what if �	� is not included
in
�

? In that case, in addition to
�

we will have to keep track of the score of the maximum suffix
 of
� ����� � ������������� :
 is the suffix ��������� � ��������� ����� that maximizes �� ��� # ��� � � # &�&�& # ��� . Let us
assume that
 is also known for � � ��� � ������������� . We are now given ��� � � , and we want to update

�
and

accordingly:

if # ��� � ��� �
then add ��� � � to
 and replace

�
by

else if # ��� � �����
then add ��� � � to

else reset
 to be empty.

The complexity of the algorithm is ������� , since a constant amount of work is done for every new element
��� � � , and there are � such elements.

12.3. Finding All High Scoring Subsequences

The algorithm described in Section 12.2 works very well if we are interested in finding one maximum sub-
sequence. However, we are generally looking for all high scoring regions, for instance, all good candidates
for coding regions. We could repeatedly use the previous algorithm to find them all: find the maximum
subsequence, remove it, and repeat on the two remaining parts of the sequence. We will call the problem of
finding exactly these disjoint maximum subsequences the all maximum subsequences problem. (In practice,
one would only want to retain those reported maximum subsequences with scores sufficiently high to be
interesting.)

The problem with repeatedly running the previous algorithm is that it will take ������� operations per
subsequence reported, and thus possibly ����� � � operations to identify all high scoring regions. Intuitively,
one might hope to do better, since much of the work done to find the first maximum subsequence could
be reused to find the second one, and so on. We now present an algorithm that solves the all maximum
subsequences problem in time ������� , the same as the time to find just one maximum subsequence. This
algorithm is due to Ruzzo and Tompa [3]. We first describe the algorithm, and then discuss its performance.

Algorithm. The algorithm reads the scores from left to right, and maintains the cumulative total of the
scores read so far. Additionally, it maintains a certain ordered list ������� � ��������������� � of disjoint subsequences.
For each such subsequence � ! , it records the cumulative total ! of all scores up to but not including the
leftmost score of � ! , and the total ! ! up to and including the rightmost score of � ! .

The list is initially empty. Input scores are processed as follows. A nonpositive score requires no special
processing when read. A positive score is incorporated into a new subsequence �"� of length one1 that is then

1In practice, one could optimize this slightly by processing a consecutive series of positive scores as #%$.

LECTURE 12. MAXIMUM SUBSEQUENCE PROBLEM 57

�������������������������
�������������������������

4 -5

-3
-2

13

1

2 2 -2

5

Sequence Position
�����������������������������������
�������������������������

4 -5

-3
-2

13

1

2 2 -2

5

C
um

ul
at

iv
e

S
co

re

Sequence Position

C
um

ul
at

iv
e

S
co

re

Figure 12.1: An example of the algorithm. Bold segments indicate score sequences currently in the algo-
rithm’s list. The left figure shows the state prior to adding the last three scores, and the right figure shows
the state after.

integrated into the list by the following process.

1. The list is searched from right to left for the maximum value of
�

satisfying !��� � .
2. If there is no such

�
, then add � � to the end of the list.

3. If there is such a
�
, and ! !	��! � , then add ��� to the end of the list.

4. Otherwise (i.e., there is such a
�
, but ! !
� ! �), extend the subsequence � � to the left to encom-

pass everything up to and including the leftmost score in � ! . Delete subsequences � ! ��� ! � ��������������� � �
from the list (none of them is maximum) and reconsider the newly extended subsequence �"� (now
renumbered � !) as in step 1.

After the end of the input is reached, all subsequences remaining on the list are maximum; output them.

As an example of the execution of the algorithm, consider the input sequence
�������� ��� ���� ������� ���� ��� ���� ������� � . After reading the scores �������� ��� ���� ������� ���� ��� � , suppose the
list of disjoint subsequences is � � � ���"� ��� � � ��� � ����� � ������� � ����� � ��� � , with � � � ! � � � � � ���"� ,
� � � ! � ��� � !����� � , � "� � !#����� � !����� � , and � "� � !�� ��� � � ��� � . (See Figure 12.1.) At this point, the
cumulative score is 2. If the ninth input is �� , the list of subsequences is unchanged, but the cumulative
score becomes 0. If the tenth input is 1, Step 1 produces

� �$� , because �%� is the rightmost subsequence
with � � � . Now Step 3 applies, since ! � �&� . Thus �(' ����� � is added to the list with �)' � !!'�� � � � ��� � ,
and the cumulative score becomes 1. If the eleventh input is 5, Step 1 produces

� �*� , and Step 4 applies,
replacing �(' by ������� � with � +' � !!'�� � � � ��, � . The algorithm returns to Step 1 without reading further
input, this time producing

� �-� . Step 4 again applies, this time merging �%� , ��� , and � ' into a new
����� ������� ���� ��� ���� ������� � with � .� � !���� � � !����, � . The algorithm again returns to Step 1, but this time
Step 2 applies. If there are no further input scores, the complete list of maximum subsequences is then
� � � ���"� ��� � � ��� � ����� � ������� ���� ��� ���� ������� � .

The fact that this algorithm correctly finds all maximum subsequences is not obvious; see Ruzzo and
Tompa [3] for the details.

Analysis. There is an important optimization that may be made to the algorithm. In the case that Step 2
applies, � � ������������� � � are maximum subsequences, and so may be output before reading any more of the

LECTURE 12. MAXIMUM SUBSEQUENCE PROBLEM 58

input. Thus, Step 2 of the algorithm may be replaced by the following, which substantially reduces the
memory requirements of the algorithm.

� � �

If there is no such
�
, all subsequences � � ��� � ������� ����� � � are maximum. Output them, delete them from

the list, and reinitialize the list to contain only � � (now renumbered � �).

The algorithm as given does not run in linear time, because several successive executions of Step 1
might re-examine a number of list items. This problem is avoided by storing with each subsequence � �
added during Step 3 a pointer to the subsequence ��! that was discovered in Step 1. The resulting linked
list of subsequences will have monotonically decreasing ! values, and can be searched in Step 1 in lieu of
searching the full list. Once a list element has been bypassed by this chain, it will be examined again only if
it is being deleted from the list, either in Step 2

�

or Step 4. The work done in the “reconsider” loop of Step 4
can be amortized over the list item(s) being deleted. Hence, in effect, each list item is examined a bounded
number of times, and the total running time is linear.

The worst case memory complexity is also linear, although one would expect on average that the sub-
sequence list would remain fairly short in the optimized version incorporating Step 2

�

. Empirically, a few
hundred stack entries suffice for processing sequences of a few million residues, for either synthetic or real
genomic data.

References

[1] J. L. Bates and R. L. Constable. Proofs as programs. ACM Transactions on Programming Languages
and Systems, 7(1):113–136, Jan. 1985.

[2] J. Bentley. Programming Pearls. Addison-Wesley, 1986.

[3] W. L. Ruzzo and M. Tompa. A linear time algorithm for finding all maximal scoring subsequences.
In Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology,
pages 234–241, Heidelberg, Germany, Aug. 1999. AAAI Press.

