Puzzles

3 people brought into a room

Hat placed on each person’s head: Red or Blue equally likely

Each person sees colors of other people’s hats, but not their own

Each person, without communication says: R, B or pass

All 3 shot unless they can agree on a strategy ahead of time

• at least one doesn’t pass
• everyone who doesn’t pass is right.

Strategy 1: Each person guesses \(\Rightarrow \Pr(\text{not all shot}) = \frac{1}{8} \)

Strategy 2: 2 pass, 1 guesses \(\Rightarrow \Pr(\text{not all shot}) = \frac{1}{5} \)

Is there a better strategy?
Randomized Algorithms & Probabilistic Analysis of Algorithms...

Model of computation: standard model (TM, RAM) with additional input consisting of stream of perfectly random bits.

\[\Rightarrow \text{behavior can vary on fixed input, running time on particular input is a random variable.} \]

Example of difference:

- quicksort with randomly selected pivots vs QS where input is random

- again, performance of algorithm is a random variable

- also other random structures: random graphs, random boolean formulas, etc.

Why randomized algs?

- often simplest or fastest
- fun!!!
Matrix Product Verification

Given $n \times n$ matrices A, B, C over field F.

Told $AB = C$.

Goal: to verify this identity.

Obvious method: matrix multiplication $O(n^{2.376})$.

Freivalds' Algorithm simple & elegant

One of the first published uses of randomization in algorithms.

Pick random vector $\vec{r} = (r_1, r_2, \ldots, r_n) \in \{0, 1\}^n$.

Each r_i is independent and equally likely to be 0 or 1.

Compute $A(\vec{r})z$.

If $Cr = z$ then output "yes, $AB = C$".

Else output "no".

Running Time:

Errors:
\textbf{Claim:} \(\Pr(\text{output an incorrect answer}) \leq \frac{1}{2} \)

\textbf{Proof:} Define \(D = AB - C \)

Suppose \(D \neq 0 \)

Then \(\exists \) entry, say \((i,j)\) s.t. \(d_{ij} \neq 0 \)

\[
\Pr(Dr = 0) \leq \Pr(\sum_k d_{ik} r_k = 0)
\]

\[
= \Pr(d_{ij} r_j = -\sum_k d_{ik} r_k)
\]

\[
= \Pr\left(r_j = -\frac{\sum_k d_{ik} r_k}{d_{ij}}\right)
\]

Example of simple but powerful principle of deferred decisions

multiple r.v.'s - think of setting some of them first
and deferring setting rest until later
in analysis

Formally, use law of total probability; condition on values of vars set 1st
\[\Pr \left(r_j = \frac{-\sum \text{dier} \cdot r_k}{d_{ij}} \right) = \sum_{(x_{i_1}, x_{i_2}, x_{i_3}, \ldots, x_j) \in \{0, 1\}^{m-1}} \Pr(r_j = \frac{-\sum \text{dier} \cdot r_k}{d_{ij}} \mid (r_{i_1}, r_{i_2}, r_{i_3}, \ldots, r_j) = (x_{i_1}, x_{i_2}, x_{i_3}, x_j)) \Pr(A) \leq \frac{1}{2} \]

\[\leq \sum_{(x_{i_1}, x_{i_2}, x_{i_3}, \ldots, x_j) \in \{0, 1\}^{m-1}} \frac{1}{2} \Pr(A) = \frac{1}{2} \]

If we want to reduce the probability of error, we can do so at the expense of small \(\Delta \) in running time.

1. Run alg \(k \) times
2. Output yes if get yes all \(k \) times

\[\Pr(\text{error}) \leq \frac{1}{2^k} \]

by independence of trials.
Fingerprinting \[[MR] \; 7.4 \] \[[CG] \; 2.2.1 \]

A & B each have large DB, separated by long distance
\[\downarrow \] \[\downarrow \]
a, b both n-bit strings

want to check if \(a = b \).

Deterministically n bits of communication necessary

Next: randomized protocol that uses \(O(\log n) \) bits of communication

A picks prime \(p \in [2^{n-1}] \) \(\text{u.a.r.} \) \[\text{to be determined} \]

A sends \((p, a \mod p) \) to B

B computes \(b \mod p \)

If \(a \mod p = b \mod p \), B sends back “yes”, else “no”

Always gives right answer if \(a = b \).

may give wrong answer if \(a \neq b \)

Suppose \(a \neq b \)

\(\Pr(\ a \mod p = b \mod p) = \Pr(\ a-b \text{ is multiple of } p) \)
\[\frac{\text{\# distinct primes that divide } a-b}{\text{\# primes in } [2..x]} \leq n \]

Each prime \(\geq 2 \) can't multiply \(> n \) together before get \(> n \)

Prime \# Thm:
\[\text{\# primes } \leq x \approx \frac{x}{\log x} \]
\[\geq 1.26 \frac{x}{\ln x} \quad \forall \quad x \geq 17 \]

\[\frac{n \ln x}{1.26 \times x} \]

choosing \(x = \frac{c}{1.26} n \ln n \)

\[\leq \frac{1}{c} \frac{\ln x}{\ln n} = \frac{1}{c} + o(1) \]

\[= 2 \log x \approx O(\log n) \]

Example: \(n = 2^{23} \approx 1 \text{ MByte} \quad x = 2^{32} \quad (\text{fingerprints are 32 bit words}) \)

\[\Pr(\text{error}) < 0.0035 \]
MaxCut
[MU]6.2.1 [CG]1.4.1

Simple randomized alg.

Illustration of **probabilistic method**

Use probabilistic argument to prove non-probabilistic mathematical thm.

Defn: cut in graph: partition of nodes into 2 sets S and \bar{S}

An edge crosses cut if it has one endpoint in S & one in \bar{S}

Thm:

In any graph $G = (V, E)$, \exists cut st. at least $\frac{1}{2}$ edges cross cut.

Proof technique: show that if we pick a random cut, the expected number of edges that cross cut is $\geq \frac{1}{2}|E|$

Pick cut u.a.r., $\forall v \in V$, flip fair coin $\begin{cases} H & \rightarrow v \in S \\ \uparrow & \rightarrow v \in \bar{S} \end{cases}$

Let $X_e = \begin{cases} 1 & e \text{ crosses cut} \\ 0 & \text{o.w.} \end{cases}$

$X = \sum_{e \in E} X_e$

$\#$ edges crossing cut

$E(X) = ?$
$$E(X) = E(\sum_{e \in E} X_e) = \sum_{e \in E} E(X_e) = \frac{1}{2} |E|$$

$$\Rightarrow$$ sample space must contain at least one cut in which $\geq \frac{1}{2}$ edges cross cut. O.w. $E(X) < \frac{1}{2} |E|$.

Typical example of prob method:

- Not everybody can be below (or above) average.

- Collection of objects $\Pr(\exists$ object with property $P) > 0$

 \Rightarrow \exists object in collection with property P