\[p_{xy} = \frac{c_{xy}}{c_x} \quad T_x = \frac{c_x}{c_G} \quad G \text{ connected} \]

\[L(G) = \begin{pmatrix} c_1 & 0 \\ c_2 & c_n \end{pmatrix} - \begin{pmatrix} i \\ -c_{ij} \end{pmatrix} \]

\[= \sum_{e} c_e \begin{pmatrix} u \\ v \end{pmatrix} \begin{pmatrix} u \\ -1 \end{pmatrix} \quad e = (u, v) \]

\[x^T L(G)x = \sum_{e=(u,v)} c_e (x_u - x_v)^2 \]

Laplacian p.s.d. \(\implies \lambda_i \geq 0 \)

\[0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n \quad \forall \lambda_i \text{'s are non-negative} \]

If \(G \) connected, \(\lambda_2 > 0 \)
Laplacian quadratic form highlights connection between Laplacian and cut structure.

Take \mathbf{x} so $x_i = 1$ if $i \in S$, 0 otherwise.

Then $\mathbf{x}^T \bar{L} \mathbf{x} = \sum_{e \in \delta(S)} c_e$, which measures capacity of cut $\delta(S)$.

No small cuts \Rightarrow "expansion" \Rightarrow rapid mixing \Rightarrow spectral gap.

$\hat{\lambda}_2$, 2nd smallest eigenvalue of normalized Laplacian:

$$\hat{L}(G) = D(G)^{-1/2} L(G) D(G)^{-1/2}$$

$T'(\varepsilon)$ steps for lazy r.w. to converge to within ε of Π

$$|\pi^0_i \frac{\tau'_{T'(\varepsilon)}}{\tau_{T'(\varepsilon)}} - \Pi_j| \leq \varepsilon \quad \forall j$$

$$T'(\varepsilon) = \frac{1}{\hat{\lambda}_2 \log \frac{n}{\varepsilon}}$$

$$C = \frac{\max_{c_e} c_e}{\min_{c_e} c_e}$$
Connections to cut structure

\[\Gamma_G = \text{conductance} = \min_{S \neq \emptyset} \Phi(S) \]

\[\Phi(S) = \frac{\sum_{e \in \partial S} c_e}{\min \left(\sum_{e \in \partial \text{in}} c_e, \sum_{e \in \partial \text{out}} c_e \right)} \]

Cheeger's Inequality:

\[2 \sqrt{\Gamma_G} \geq \lambda_2 \geq \frac{\Gamma_G^2}{2} \]

cuts of small conductance are obstacles to rapid mixing
in some sense only obstacles
Back to electrical flows:

If electric flow \vec{f}, field vector ϕ by vertex potentials for unit s-t current, compute \vec{f} by solving system

$$L_G \phi = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$c_x \phi_x - \sum_{y \in N(x)} c_{xy} \phi_y = 0$$

$$c_s \phi_s - \sum_u c_{su} \phi_u = 1$$

$$\sum_u c_{su} (\phi_s - \phi_u) = \sum_u f_{su} = 1$$

$$\hat{\varepsilon}_r(f) = f^T R f = \phi^T L(G) \phi$$

\[\begin{align*}
\sum_e Ce (\phi_e - f_e)^2 &= \sum_e Ce \frac{f_e^2}{2e} = \sum_e \frac{Ce}{e} f_e^2
\end{align*} \]
Applications

Spectral Spanification

Given $G = (V, E, c)$ find $H = (V, F, w)$

sparse $|F| = O(n)$

s.t. H approximates G well

\equiv all cuts approximately preserved $++$

$X^T L_H X \approx X^T L_G X$ for X (eigenvalues \approx same)

Example: degree d expanders approx complete graph

Sample edges w/ prob \propto effective resistance between ends.
Solving symmetric diagonally dominant linear systems

\[Ax = b \quad A \text{ symm} \quad A_{ii} \gg \sum_{j \neq i} |A_{ij}| \]

[Spielman Tang] \ldots [Kelner, Orecchia, Sidford, Zhu]

Numerous applications: scientific computing, machine learning, vision, ...
+ algorithmic applications - flow, sparsification, routing, etc.

\[\text{reduces} \rightarrow \nabla f = f_{s,t} \quad \equiv \text{electrical flow problem} \]

New alg: start with unit s-t flow (e.g. \(s-t \) path)

If it was electrical flow \(\nabla f \) cycle \(C \)
\[\sum_{e \in C} \nabla f_e = 0 \]

- randomly sample cycle from well-chosen dist\(h \)

- compute \(\sum_{e \in C} \nabla f_e \) \& if \(\neq 0 \), add flow around cycle to make this \(0 \).

Show that w\(h \) suitable data structures can be implemented efficiently in not too many cycle updates
Max Flow [Christiano et al., Srivastava/Rao]

- Compute electrical flow by solving $L \cdot f = \delta$ s.t. efficiency capacities will be violated

Version 1

Penalize congested edges by $1 \cdot r_e$

repeat

Version 2

$(u \rightarrow v)$ overly congested

$=>$ create current see at v if value $= \text{excess flow}$

remove current at u

repeat
Random Spanning Trees

Procedure: Fix ordering on vertices \(v_1, \ldots, v_n \)

Take \textit{rw} starting at \(v_2 \) till hit \(r \), erasing any cycles.

Add edges on path to tree

If \(T \) spanning stop

If not, take first vertex in ordering that isn’t visited

Take \(r \cdot w \) erasing cycles until hit tree

Repeat... till tree is spanning

This tree is uniformly random tree!!! [Wilson]
Claim: Suppose fix a root \(r \) & select oriented tree

\[
\text{edge directed towards root with prob } \propto \prod_{e \in T} p_e^2
\]

Then if orientation & root are forgotten

\[
Pr(T) \propto \prod_{e \in T} c_e
\]

\[
\text{fix } r: \Pr(T^r) \propto \prod_{e \in T} p_e^2 = \frac{\prod_{e \in T} c_e}{\prod_{v \in V \setminus r} c_v}
\]

\[
\propto \frac{\prod_{e \in T} c_e}{\prod_{v \in V \setminus r} c_v} \quad \text{since } c_r \text{ same for all } T^r
\]

\[
\propto \prod_{e \in T} c_e \quad \text{since denom doesn't depend on } T
\]

Theorem

Wilson's algo finds tree in \(T^r \) w/ prob \(\propto \prod_{e \in T} p_e^2 \)

Therefore once root & orientations forgotten, find tree

w/ prob \(\propto \prod_{e \in T} c_e \)

Proof: Order in which cycles popped off stack doesn't matter
Lemma
\[Pr((x,y)\in T) = c_{xy} \cdot R_{x\leftrightarrow y} \]

Proof
Run Wilson's alg with root y, starting at x

\[Pr(e\in T) = Pr_x(\text{first hit y, walking along } e) \]

\[= \sum_t Pr(\text{return to x at time } t \text{ without seeing } y) \cdot \frac{ce}{cx} \]

\[= E_x(\# \text{ visits to x without seeing } y) \cdot \frac{ce}{cx} \]

\[= cx \cdot R_{x\leftrightarrow y} \cdot \frac{ce}{cx} = ce \cdot R_{x\leftrightarrow y} \]

Negative correlation:
\[Pr(e\in T \text{ and } f\in T) \leq Pr(e\in T) \cdot Pr(f\in T) \]

Proof:
\[Pr(e\in T \land f\in T) = Pr(e\in T) \cdot Pr(f\in T | e\in T) \]

\[= Pr(e\in T) \cdot Pr(f\in T | e) \]

\[\text{amplitude of } e \text{- fused} \]
\[\equiv \text{ resistance } 0 \]
These results used to get best known alg for TSP problems
Kirchoff’s Matrix Tree Thm

\[\sum_{T} \prod_{e \in T} c_e = \frac{1}{n} \prod_{i=2}^{n} \lambda_i \]

Eigenvalues of Laplacian