Random selection

 choose "typical" element of a set, avoiding rare "bad" elements. Example: min-cut

Random ordering and backwards analysis

 Order input randomly, express probability in terms of "output"structure created. Examples: computational geometry, data structures.

Random sampling as algorithmic tool

 Sample to get representative subproblem which can be solved efficiently. Examples: median-finding, MST

Fingerprinting and hashing

 FPs are short signatures for long string; hashing is technique for storing set and implementing dictionary operations

Fingerprinting and hashing

 FPs are short signatures for long string; hashing is technique for storing set and implementing dictionary operations

Use of limited independence

 Enables reduction in amount of randomness needed. Examples: universal hashing and perfect hashing.

Abundance of witnesses

Want to determine if input has a certain property (e.g. is x prime?).
 Find a "witness" to fact. If search space large, but witnesses abundant, can search randomly.

Minimax theorem

Randomized complexity ⇔ average case analysis

Probabilistic method

 Use probabilistic argument to prove non-probabilistic mathematical statements.

Tail bounds

Crucial for bounding deviation from expectation

Load balancing

Balls in bins type problems. Example: allocation of resources in a distributed environment.

Randomized rounding

Technique for transforming fraction solutions or vector solutions ->
integral solutions. Most important for approximately solving NPcomplete problems.

Random walks, Markov chains, Markov Chain Monte Carlo

 Techniques for estimating probabilities of interesting events, approximately counting interesting objects, sampling

Martingales

 Collection of tools for reasoning about certain kinds of naturally arising stochastic processes that correspond roughly to fair gambling.

- Dimensionality reduction
 - E.g. Johnson-Lindenstrauss
- Random graphs and other random structures
 - Properties, 0-1 laws, etc.
- Other techniques
 - E.g. Lovasz Local Lemma, Chen-Stein method, etc.
- Entropy and Information Theory
 - With applications to error-correction codes and compression

Administrivia

Anna Karlin

- CSE 594, karlin@cs
- Office hours by appointment

Paris Koutris

- CSE 378, pkoutris@cs
- Office hours: TBD

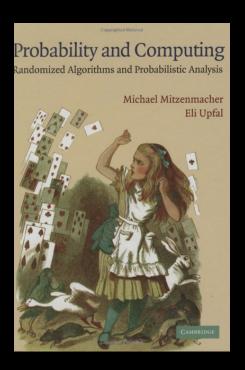
Course web page:

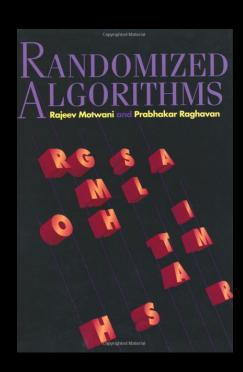
– http://www.cs.washington.edu/525

Plan for Course

- First half or a bit more:
 - mix of introductory lectures on various of topics just mentioned, with a focus on introducing key techniques, and for each technique, at least one application.
- Second half:
 - Techniques and exciting applications from the last 5 years.
 - Goal: to push us to the frontier

Background expected


- Introductory probability at the level of CSE 312:
 - Probability space, random variables, basic distributions, independence, conditional probability, expectation, ...
- Algorithms <= CSE 412
- "Mathematical maturity"
 - Linear programming
 - Linear algebra


Workload

- Approximately 4 problems sets.
- Paper and presentation on a research paper relevant to the course.
 - Can work in pairs.
 - Paper must be approved by May 1.
 - 30 minute presentation during the last 2 weeks of quarter.
 - After the presentation, I'll ask you to delve into the details of some specific aspect for the final version of the paper.
- Final

Other

Books

• No class April 16!