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1 The moment methods

The moment method is used to bound the probability that a random variable fluctuates far from its mean,
by using its moments. These are used to prove properties about probabilistic structures, such as random
graphs.

1.1 First Moment Method

The first moment method uses the simple fact that if a random variable X has expected value E(X), then
it takes some value ≥ E(X) and some value ≤ E(X).

Now, if X ≥ 0 is an integer valued function, using the Markov Inequality, we can say that Pr(X ≤ 1) <
E(X). Thus, if E(X) << 1, we can say that X = 0 with high probability. This simple application of the
Markov inequality is known as the First Moment method.

Note however, that if we are told that E(X) >> 1, it is not possible to prove that Pr(X ≥ 1) is large
using the first moment method. This is because X taking an enormous value with low probability is not
ruled out by the first moment method.

1.2 Second Moment Method

The second moment method overcomes the limitations of the first moment method by using E(X2) instead
of E(X).

One version of the Second Moment Method is Chebychev’s inequality, which states that

∀λ > 0

Pr(|X − µ| ≥ λσ) ≤ 1
λ2

for a non negative integer valued random variable X
Another version states that

Pr(X = 0) ≤ V ar(X)
(E(X))2

Proof

Pr(X = 0) ≤ Pr(|X − µ| ≥ µ)

≤ σ2

µ2

=
V ar(X)
(E(X))2

Corollary 1. If V ar(X) = o(E(X)2), then Pr(X > 0) = 1− o(1)
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Another second moment inequality states the following:

Theorem 2. Pr(X > 0) ≥ (E[X])2

E[X2] .

Proof For non-negative valued random variables X,Y with E[X2] > 0 and E[Y 2] > 0. Let U =
X√
E[X2]

, V = Y√
E[Y 2]

. That 2|UV | ≤ U2 + V 2 implies

2|E[UV ]| ≤ 2E[|UV |] ≤ E[U2] + E[V 2] = 2,

which implies (E[UV ])2 ≤ 1, or equivalently, (E[XY ])2 ≤ E[X2]E[Y 2].
Set Y = 1X>0, and we have

(E[X])2 ≤ E[X2]E[12
X>0] = E[X2]Pr(X > 0),

from which Pr(X > 0) ≥ (E[X])2

E[X2] immediately follows.

2 Covariance in a Binomial Random Variable

For a bionomial random variable

X = X1 +X2 + ...+Xn

Claim 3. V ar(X) =
n∑
i=1

V ar(Xi) +
∑
i

∑
j 6=i

Cov(Xi, Xj), where Cov(X,Y ) = E(XY )− E(X)E(Y ).

Proof

V ar(X) = E[

(
n∑
i=1

Xi

)2

]−

(
E[

n∑
i=1

Xi]

)2

=
n∑
i=1

(
E[X2

i ]− E[Xi]2
)

+
∑
i 6=j

E[XiXj ]− E[Xi]E[Xj ]

=
n∑
i=1

V ar(Xi) +
∑
j 6=i

Cov(Xi, Xj).

Often, the Xi’s are indicator random variables, with Pr(Xi = 1) = pi and Pr(Xi = 0) = 1− pi. In this
case,

V ar(Xi) = pi(1− pi)
≤ pi
= E(Xi)

=⇒ V ar(X) ≤ E(X) +
∑
i 6=j

Cov(Xi, Xj)
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3 Random Graphs

3.1 4-cliques in random graphs

Definition 4. Let Gn,p be the random graph with n vertices and each edge independently present with
probability p.

Claim 5. Gn,p almost surely does not have a clique with 4 or more vertices for p = o(n−2/3) and almost
surely does for p = ω(n−2/3).

Proof There are
(
n
k

)
possible 4-cliques, which we enumerate as C1, C2, . . . , C(n

4). Let Xi, i = 1, 2, . . . ,
(
n
4

)
be indicator random variables for each of the cliques. Then,

X =
(n
4)∑
i=1

Xi

is a random variable for the number of 4-cliques with

E[X] =
(
n

4

)
p6 ≈ n4p6

4!
.

If p = o(n−2/3), then by the first moment method E[X] = o(1).
If p = ω(n−2/3), then E[X]→∞ as n→∞. If V ar(X) = o(E[X2]), then by the second moment method,

lim sup
n→∞

Pr(X = 0) ≤ lim sup
n→∞

V ar(X)
E(X2)

≤ 0.

Hence it suffices to show that V ar(X) = o(E[X2]). For pairs of possible cliques Ci, Cj , we have the following
cases:
Case 1: Ci ∩ Cj = ∅. Cov(Xi, Xj) = 0.
Case 2: |Ci ∩ Cj | = 1. Cov(Xi, Xj) = 0.
Case 3: |Ci ∩ Cj | = 2. Cov(Xi, Xj) ≤ E[XiXj ] = p11.
Case 4: |Ci ∩ Cj | = 3. Cov(Xi, Xj) ≤ E[XiXj ] = p9.

V ar(X) ≤ E[X] +
∑

1≤i6=j≤m

Cov(Xi, Xj)

≤
(
n

k

)
p6 +

(
n

6

)(
6

2, 2, 2

)
p11︸ ︷︷ ︸

case 3

+
(
n

5

)(
5

3, 1, 1

)
p9︸ ︷︷ ︸

case 4

≤ c
(
n4p4 + n6p11 + n5p9

)
= o((E[X])2).

since (E[X])2 =
((
n
4

)
p6
)2 = θ(n8p12), p = ω(n−2/3).

3.2 Evaluation of random graphs

Theorem 6. The following hold almost surely, or in other words, with probability going to 1 as n→∞.

• If p = o
(

1
n

)
, then the graph has no cycles.

• If p ≤ c
n , c < 1, then the longest connected component has size θ(log n).

• If p = 1
n , then the longest connected component has size θ(n2/3).

• If p ≥ c
n , then the longest connected component has size θ(n).

• If p = log
n , then the graph is connected and has a Hamiltonian cycle.
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3.3 First order theory of random graphs

Let us define a language where variables (x, y, z, . . .) represent vertices, x = y denotes equality of x and y,
x y denotes adjacency, and ∧,∨,¬,∀,∃ denote logical and, logical or, logical not, universal quantifier, and
existential quantifier respectively. Call this the first-order language. Below are examples:

• G contains a triangle: ∃x∃y∃z x ∼ y ∧ x ∼ z ∧ y ∼ z.

• no isolated point: ∀x∃y(x y).

• diameter equals 2: ∀x∀y∃z ((x = y) ∨ (x ∼ y) ∨ (x ∼ z ∧ y ∼ z)).

G is Hamiltonian, G is connected are not first order theory properties. That is, they cannot be expressed
using the first order language. Given that A is a first-order property, let

Pr(G(n, p)| = A) ≡ Pr(random graph from G(n, p) has property A).

Theorem 7 (Fagin; Glebskii, Kogan, Liagonkii, and Talanov). For all fixed p, 0 < p < 1, and any first
order graph property,

lim
n→∞

Pr(G(n, p)| = A) = 0 or 1.

Theorem 8 (Shelah and Spencer). For all irrational α ∈ (0, 1), setting p = p(n) = n−α and for any first
order property A

lim
n→∞

Pr(G(n, p)| = A) = 0 or 1.

3.4 Percolation on a tree

Theorem 9. Given the random complete binary tree of depth n where each edge is present with probability

p, let Xi be a random indicator variable for the reachability of the ith leaf from the root and X =
2n∑
i=1

Xi, the

number of leaves reachable from the root. Then, if p ≥ 1
2

2
n+ 2

≤ Pr(X > 0).

Proof We have

lim
n→∞

E[X] = lim
n→∞

2n · pn =


∞ p > 1

2

1 p = 1
2

0 p < 1
2

.

By the second moment method,

Pr(X > 0) ≥ (E[X])2

E[X2]
.

We have

X2 =

(
2n∑
i=1

Xi

)2

=
2n∑
i=1

X2
i +

∑
1≤i6=j≤2n

XiXj .

Let k(i, j) denote the depth of the node from which the paths from the root to the ith and jth leafs diverge.
Then,

E[XiXj ] = p2n−k(i,j)
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and for p > 1
2 , ∑

1≤i 6=j≤2n

XiXj =
∑

1≤i 6=j≤2n

p2n−k(i,j)

=
n−1∑
k=0

2k2n−k2n−k−1p2n−k

=
1
2

n∑
k=0

22n 1
2k
p2n 1

pk

=
1
2

(2p)2n
n−1∑
k=0

1
(2p)k

=
1
2

(2p)2n ·
1− 1

(2p)n

1− 1
2p

≤ 1
2

(2p)2n
2p

2p− 1

=
p

2p− 1
(2p)2n.

Hence,
E[X2] ≤ p

2p− 1
(2p)2n[1 + o(1)],

from which follows

Pr(X > 0) ≥ (E[X])2

E[X2]
≥ 2p− 1

p
(1− o(1)) > c

for p > 1
2 . For p = 1

2 , ∑
1≤i6=j≤2n

XiXj =
n−1∑
k=0

2k2n−k2n−k−1p2n−k =
n

2

and
E[X2] = 1 +

n

2
, (E[X])2 = 1,

from which follows

Pr(X > 0) ≥ (E[X])2

E[X2]
≥ 2
n+ 2

,

which proves our lower bound.
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