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1 Doob’s martingale process

Let Y1, . . . , Yn be an arbitrary sequence of random variables. Let X be some random variable with finite
expectation: E [X] <∞. We define Doob’s process as follows:

X0
df
= E [X]

Xn
df
= E [X | Y1, . . . , Yn]

Theorem 1. Doob’s process is a martingale.

Proof By the law of total expectation (E [V |W ] = E [E [V | U,W ] |W ]),

E [Xn+1 | Y1, . . . , Yn] = E [E [X | Y1, . . . , Yn+1] | Y1, . . . , Yn] = E [X | Y1, . . . , Yn] = Xn

1.1 Edge exposure martingale

An example of a Doob’s process is an edge exposure martingale, which helps to calcuate an expectation of
some graph-theoretic function of a random graph.

Let G(n, p) be a random graph on n vertices, where each of the m =
(
n
2

)
edges is present with probability

p. Fix some particular ordering of the edges e1, . . . , em. Let f(G) be any graph-theoretic function, such as
chromatic number, maximum independent set size, maximum clique size etc.

We define m independent random variables Y1, . . . , Ym:

Yi
df
=

{
1 if edge ei is present with probability p

0 otherwise

Then Xk
df
= E [f(G) | Y1, . . . , Yk] is a Doob’s martingale. This is a conditional expectation of a function f ,

given a partial information about fixed states of k edges in this graph.
An illustration for this martingale type is given in figure 1. Here Xi = E [max clique size | e1, . . . , ei].

Figure 1 shows a tree of possibilities, branching on the state of every exposed edge ei. Without any prior
knowledge X0 = E [max clique size] = 2 (it can be verified by averaging clique sizes for all the leaves of the
tree). The numbers in tree vertices show our max clique size expectation, conditioned upon the state of
exposed edges – the value of random variable Xi. The tree also illustrates the main martingale property: at
each vertex, the average of child numbers (the conditional expectation of Xi+1) is equal to the value of Xi.

2 Applications of the Optional Sampling Theorem

In the previous lecture we introduced the Optional Sampling Theorem:

Theorem 2. Let {Zt} be a martingale with respect to a sequence {Xt}. If T is a stopping time for {Xt},
then E [Zt] = E [Z0] wherever any of the following conditions holds:
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Figure 1: A tree of possibilities for the edge exposure martingale Xi = E [max clique size | e1, . . . , ei].

• Zi are bounded: ∃c s.t. ∀i |Zi| ≤ c

• T is bounded

• E [T ] <∞ and ∃c s.t. E [|Zi+1 − Zi| | X1, . . . , Xi] ≤ c (i.e. Zi changes are bounded on each step)

We show several examples of its applications here.

2.1 Unbiased random walk on a line

Consider a random walk on a line starting at 0. On each step the probability of moving in either direction
(right or left) is 1/2. Let’s say we are interested in two particular points on a line: −a and b. What’s the
probability of reaching one of them (say, −a) before the other?

This problem is closely related to fair gambling: if a gambler walks in a casino with a dollars and a goal
of winning b dollars, and makes a sequence of fair bets (each bet either gives him a dollar or takes a dollar
with equal probability) then the probability of ruining is exactly the probability of our random walk reaching
−a before reaching b.

Let Yi be a step direction at time i:

Yi
df
=

{
1 with probability 1

2

−1 with probability 1
2

Let Xn =
n∑
i=1

Xi, a position of the random walk at time n. As shown earlier, Xn is a martingale.

The time of the walk reaching −a or b is a stopping time: it is completely determined by the current
value of Xn.

T
df
= min{n | Xn = −a or Xn = b}

Let va
df
= Pr (Xnreaches −a before reaching b).

By the Optional Sampling Theorem, E [XT ] = E [X0] = 0 (third condition holds). On the other hand,

E [XT ] = va · (−1) + (1− va) · b. Therefore va = b
a+b .
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2.2 Unbiased random walk on a line: stopping time

Under the same conditions of an unbiased random walk on a line we are interested in calculating E [T ].

Let’s define a different martingale: Zn
df
= X2

n − n. It is a martingale because E [Yn] = 0 and Var[Yn] = 1,
as shown earlier.

By the Optional Sampling Theorem, E [ZT ] = E [Z0] = 0. On the other hand,

E [ZT ] = (vaa
2 + (1− b)b2)− E [T ]︸ ︷︷ ︸

n=T

Hence, E [T ] = b
a+ba

2 + a
a+bb

2 = ab.

2.3 Biased random walk

Consider now a biased random walk:

Yi
df
=

{
1 with probability p

−1 with probability q = 1− p < p

Our new martingale measures the drift of the random walk:

X ′0
df
= 1

X ′n
df
=

(
q

p

) n∑
i=1

Yi

Again, we are interested in the probability va of the random walk reaching −a before reaching b. Let T
be a stopping time for any of these events, as above.

By the Optional Sampling Theorem, E [X ′T ] = E [X ′0] = 1. On the other hand,

E [X ′T ] = va

(
q

p

)−a
+ (1− va)

(
q

p

)b
Hence

va =
1−

(
q
p

)b
(
q
p

)−a
−
(
q
p

)b
3 Tail inequalities

Theorem 3 (Azuma-Hoeffding Inequality). If {Xi} is a martingale such that ∀k |Xk − Xk+1| ≤ ck < ∞
(i.e. martingale changes are bounded, possibly with different bounds on each step), then

∀t ≥ 0, R > 0 Pr (|Xt −X0| > R) ≤ 2 exp

−
R2

2
t∑

k=1

c2k


Proof The proof is by induction on t. The base case t = 0 is trivial.

In the induction step, let Pr (|Xt −X0| > R) ≤ 2 exp

{
−R2

/
2

t∑
k=1

c2k

}
.
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By the convexity of f(x) = eλx, we have

∀x ∈ [−c, c] eλx ≤
(
1− x

c

)
e−λc +

(
1 + x

c

)
eλc

2

df
= `(x)

after rewriting x = −c 1−
x
c

2 + c
1+ x

c

2 .
Thus if X has E [X] = 0 and |X| ≤ c, then

E
[
eλX

]
≤ E [`(X)] =

eλc + e−λc

2
=

∞∑
k=0

(λc)2k

(2k)!
≤
∞∑
k=0

(λc)2k

2kk!
= e

(λc)2

2

Therefore E
[
eλ(Xt+1−Xt) | X0, . . . , Xt−1

]
≤ e(λct)2/2.

E
[
eλXt+1 | X0, . . . , Xt−1

]
= eλXt E

[
eλ(Xt+1−Xt) | X0, . . . , Xt−1

]
≤ eλXte(λct)

2/2

Taking expectations and applying inductive assumption:

E
[
eλXt+1

]
≤ e(λct)

2/2 E
[
eλXt

]
≤ exp

{
λ2

t+1∑
i=1

c2i
2

}

Finally, Pr (Xt ≥ R) = Pr
(
eλXt ≥ eλR

)
≤ e−λReλ2 ∑

c2i /2.

Optimization gives us λ
df
= R/

t∑
i=1

c2i , hence Pr (Xt ≥ R) ≤ exp

{
−R2

/
2

t∑
i=1

c2i

}
.

Analyzing lower tail Pr (Xt < −λ), we get a similar bound, which gives us a factor of 2 in the expression.

3.1 Random walk on a line

The first example of Azuma-Hoeffding inequality application is a random walk on line. As before, let Yi
denote a step direction taken at time i:

Yi
df
=

{
1 with probability 1

2

−1 with probability 1
2

and let Xn denote a position of the random walk at time n:

Xn =

n∑
i=1

Yi

We are interested in estimating the likelihood of the random walk diverging far from origin. Since every

step is bounded by 1 (|Xk −Xk+1| ≤ 1), in the notation of theorem 3 we have
t∑

k=1

c2k = t. Consequently,

Pr (|Xt −X0| ≥ λ) ≤ 2e−λ
2/2t

Here Azuma-Hoeffding inequality tells us that the random walk in t steps is likely to stay within an area
of
√
t around origin. If λ�

√
t, then Pr (|Xt −X0| ≥ λ) = O(e−t

ε

).
A similar result can be established for a biased random walk (p 6= q). The corresponding martingale is

Xt =

t∑
i=1

Yi − t(p− q)
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3.2 Chromatic number

Consider a vertex exposure martingale Xi
df
= E [χ(G) | G1, . . . , Gi] in a random graph G(n, 1/2), where Gi is

a subgraph of G induced by first i vertices, and χ(G) is a chromatic number.
The gap between Xi and Xi+1 is at most 1, because a vertex uses no more than one new color. Conse-

quently, we can apply Azuma-Hoeffding inequality for Xn = χ(G) and X0 = E [χ(G)]:

Pr
(
|χ(G)− E [χ(G)] | ≥ λ

√
n
)
≤ 2e−2λ

2

3.3 Pattern matching

Consider a random string of characters X = (X1, . . . , Xn) – for example, a DNA sequence. Each character
is chosen independently and uniformly at random from a fixed alphabet Σ of size s. We are interested in
the number of occurrences of a particular pattern B = (b1, . . . , bk) (say, “ACCTA”) in the sequence X.
Formally, let F be the number of occurrences of the pattern B in the sequence X. Our goal is to find E [F ]
and estimate the concentration of F around its mean.

The mean can be easily calculated combinatorically:

E [F ] = (n− k + 1)

(
1

s

)k
To estimate the concentration, we define the following Doob’s martingle:

Z0
df
= E [F ]

Zi
df
= E [F | X1, . . . , Xi]

Zi defines the expected number of occurrences of the pattern in the entire sequence, given only the first
i characters. Clearly, Zn = F .

Notice that, when a new character Xi+1 is exposed, it adds at most k new occurrences of B in expectation:
from the leftmost one with bk = Xi+1 to the rightmost one with b1 = Xi+1. Hence |Zi+1 − Zi| ≤ k.

Now, by Azuma-Hoeffding inequality,

Pr (|F − E [F ] | ≥ λ) ≤ 2 exp

{
− λ2

2nk2

}
For λ = ck

√
n we get Pr (|F − E [F ] | ≥ ck

√
n) ≤ 2e−c

2/2.
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