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1 Random Walks on undirected graphs

We are given an undirected graph G = (V,E). In this class we will consider random walks on this graph
with transition probabilities of

Pij =
1

di

where di is the degree of vertex i. The Markov Chain will be periodic if and only if the graph is bipartite.
In this setting the stationary distribution is given by

πi =
di
2m

where m is the total number of edges in the graph |E|.
Some key quntities for these random walks are:

hitting time hij = E(Tij)

commute time cij = hij + hji

cover time C(G) = time to visit all vertices

hii =
1

πi
=

2m

di

Lemma 1. For all edges (i, j) we have hij + hji < 2m.

Proof Consider a corresponding random walk on the directed graph that has 2m vertices, one for each
edge and each orientation of that edge from the original graph. Being at vertex (i, j) means we are traveling
from i to j. Hence the transition probabilities

Q(i,j)(j,k) = pjk =
1

dj

Claim 2. Q is doubly stochastic (Both rows and columns sum up to 1)

∑
i|(i,j)∈E

Q(i,j)(j,k) =
∑

i|(i,j)∈E

1

dj
=
dj
dj

= 1

Fact 3. Stationary distribution of every doubly stochastic Markov Chain is uniform.

Therefore we have that for Q, πQ(i,j) = 1
2m ⇒ h(i,j)(j,k) = 2. Since every random walk that is a cycle

(also, starting from with vertices i and j and ending back in i) in the original graph corresponds to a random
walk in Q from (i, j) to (i, j) with the same probability. The correspondence is that we must make the
same choices at the corresponding places of the two graphs, therefore the probability will be the same. The
only difference is that our first choice in Q is the move from (i, j) to (j, k) which corresponds to the second
choice in the original walk, and so on until the last choice in Q (w, i)→ (i, j) which corresponds to the first
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choice in the original walk. By choice we mean choosing among the same vertices as the next vertex to visit,
therefore having the same probability.

So we have hij + hji ≤ h(i,j)(j,i) = 2m.

2 Cover time

Cu(G) : cover time starting at u

C(G) = max
u

Cu(G)

Theorem 4. E(C(G)) ≤ 2m(n− 1)

Proof Construct any spanning tree T .

E(C(G)) ≤
∑

(i,j)∈T

(hij + hji) ≤ 2m(n− 1)
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Figure 1: A lollipop graph. Half of the vertices are in the handle, the other half in the disc. The disc is a
full graph.

For example the lollipop has covertime C(G) = Θ(n3).
We already proved that the line graph has a covertime C(G) = Θ(n2).
The complete graph has a covertime of C(G) = Θ(n log n). Look up the coupon collector problem. It is

exactly the same.

3 Application: s-t connectivity

We have the following problem: Given an undirected graph G = (V,E) and s, t ∈ V , decide whether s and t
are in the same connected component. We have DFS and BFS but both of them use O(m) and O(n) space
for keeping track of which vertices are visited.
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There is a very simple randomized algorithm that uses log V space. The input is on a separate read-only
tape.

Simulate random walk of length 2n3 on G starting from s. We have then that:

Pr(doesn’t reach t when there is a path) ≤ 1

2

.

4 Regular graphs

Here we look into random walks on regular graphs (each vertex has the same degree d.

Pij =
1

d
⇐⇒ (i, j) ∈ E

.

π = (
1

n
, · · · , 1

n
)

5 Mixing time

How long does it take to converge to π? The mixing time of is related to the algebraic properties of P .
Suppose q0 is the initial distribution over the vertices and qt is the distribution after t steps. Also P t is

P raised to the power t. Then
qt = q0P t

.
How close is qt to π.

Theorem 5 (Spectral Theorem). If M ∈ RNxN is symmetric, then:

• all N eigenvalues are real (solutions λ of det(A− λI) = 0.

• There exist orthonormal set of eigenvectors v1, . . . , vn corresponding to eigenvalues λ1, . . . , λn. Also
vi · vj = 1 when i = j and 0 otherwise .

Therefore we have that

M =

N∑
i=1

λiviv
T
i = ΦTΛΦ

where ΦT = (v1, v2, . . . , vn) and we also assume that vi are column vectors. Λ = diag(λ1, . . . , λn).

ΦΦT = ΦTΦ = I

⇒M t =
∑
i

λtiviv
T
i

We let superscript t to mean the corresponding eigenvalue of or the transition matrix itself at time t.
This is equivalent to raising it to the power of t.

Theorem 6 (Penon-Frobenius Theorem). If A > 0 (positive definite) and Am � 0 (elementwise greater)
for all m ≤M .

• There exist #»x � 0 such that Ax = λ∗x

• If λ 6= λ∗ is any other eigenvalue of A then |λ| < λ∗.
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If P is defined as follows (called lazy random walk) then it satisfies the theorem and 0 ≤ eigenvalues ≤ 1.

Pij =
1

2
i = j (1)

Pij =
1

2d
(i, j) ∈ E (2)

Pij = 0otherwise (3)

5.1 Mixing time

P t = v1v
T
1 +

∑
i≥2

λtiviv
T
i

where

vT1 = (
1√
n
, · · · , 1√

n
)

v1v
T
1 =

1

n
J (all 1’s matrix)

Let’s write q0 as q0 =
∑
i

civ
T
i where ci = q0 · vi.

q0P t =
∑
i

civ
T
i

∑
j

λtjvjv
T
j

=
∑
i

ciλ
t
iv
T
i

Using ci = q0 · vi = 1√
n

∑
q0i = 1√

n
and λ1 = 1 we get

=
1√
n
vT1 +

∑
i≥2

ciλ
t
iv
T
i

= (
1

n
, · · · , 1

n
) +

∑
i≥2

ciλ
t
iv
T
i

= π +
∑
i≥2

ciλ
t
iv
T
i

Let’s see how far we are from the stationary distribution at time t.

||q0P t − π|| = ||
n∑
i=2

ciλ
t
iv
T
i ||

=

√√√√ n∑
i=2

c2iλ
2t
i

≤ λt2
√∑

i

c2i

= λt2||q0||

≤ λt2
At

t = Ω(
1

(a− λ2)
log n)⇒ ABOV EWHY n−c
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It takes O( 1
(1−λ2)

log n) steps to converge to the stationary distribution. When (1 − λ2) is big, when

λ2 � 1, we have a fast convergence.
D-regular graphs with λ2 � 1 are called expanders.

• Random d-regular graphs with even small d constant are expanders.

λ2 = Θ(
1√
d

) ⇒ mixing time is O(log n)

.

There exist explicit constructions with long mixing times.

• For hypercube: n = 2k, d = k = log n. λ2 = 1− 2
logn .

• Cycles: λ2 = 1− θ( 1
n2 ).

Expanders find use in a wide variety of theoretical computer science:

• Comprexity Theory

• Design of robust computer networks

• Error correcting codes

• Pseudorandomness
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