
CSE525: Randomized Algorithms and Probabilistic Analysis April 2, 2013

Lecture 1
Lecturer: Anna Karlin Scribe: Sonya Alexandrova and Eric Lei

1 Introduction

The main theme of this class is randomized algorithms. We start by comparing these to the deterministic
algorithms to which we are so accustomed. In the deterministic model of computation (Turing machines
and RAM), an algorithm has fixed behavior on every fixed input. In contrast, in the randomized model
of computation, algorithms take additional input consisting of a stream of random bits. Their behavior
and performance can therefore vary on a fixed input. To illustrate the difference, consider quicksort where
the input is a random permutation but the pivot is always the first element, and compare it to quicksort
with a random pivot. In the first case, even though the input is a random variable, quicksort will always
execute the same behavior. Consequently, the algorithm is deterministic. In the second case, however,
multiple executions could produce different behavior on the same input, so the algorithm is randomized, and
performance is a random variable.

Naturally, we question whether studying randomized algorithms is worth the effort. The answer is a
resounding yes, since they are often the simplest or fastest known algorithms, as we shall soon see. Also,
they are fun!

This lecture will showcase several classical examples of randomized algorithms. These notes are organized
as follows: Section 1—Introduction; Section 2—Matrix-Product Verification; Section 3—Fingerprinting;
Section 4—Max Cut.

2 Matrix-Product Verification

In this section, we will cover one of the first published uses of randomization in algorithms: Freivald’s
algorithm (1977). Simple and elegant, the algorithm verifies the product of square matrices, given a candidate
for the solution. More precisely, given (n× n) matrices A, B, and C over a field F , we must decide whether
the equation AB = C holds. The obvious deterministic method to verify a matrix product is to simply
compute AB and compare it to C. The runtime is O(n2.3727), using the Coppersmith-Winograd algorithm
for matrix multiplication. Yet we will prove that Freivald’s algorithm (Algorithm 1) does better, with a high
probability of correctness.

A field F is a set over which addition and multiplication are defined with all the properties to which we
are accustomed, including commutativity, associativity, inverses, and identity elements. In the discussion
that follows, we take F = GF(2), the Galois field of two elements. Informally, GF(2) is akin to the set
of integers modulo 2. In computer science, GF(2) is commonly used because it corresponds to bitwise
arithmetic: addition is the XOR operation, and multiplication is the AND operation.

Algorithm 1 Freivald’s algorithm

1: input: (n× n) matrices A, B, and C over GF(2)
2: r ← (r1, r2, . . . , rn) ∈ {0, 1}n where the {ri} are independent, and each is equally likely to be 0 or 1
3: z ← A(Br) // computing Br first avoids multiplying two matrices
4: if Cr = z then
5: return “yes, AB = C”
6: else
7: return “no, AB 6= C”
8: end if

1-1

To summarize the algorithm, we draw a random vector of n i.i.d. Bernoulli random variables with
parameter p = 1/2. Next we compute the vector ABr, by first computing Br and multiplying the result by
A. Then we output the result of checking ABr = Cr, a necessary but not sufficient condition of AB = C.

Now we analyze the correctness and runtime of this algorithm.

Claim 1. Let E denote the event of outputting an incorrect answer; i.e., E = {ABr = Cr ∧ AB 6= C}.
Then Pr(E) ≤ 1/2.

Proof Let D = AB−C. Then D = 0 if and only if AB = C. Suppose D 6= 0. Then there exists a nonzero
entry (i, j) of D, say dij . Let r−j = (r1, . . . , rj−1, rj+1, . . . , rn). We have

Pr(E) = Pr(Dr = 0 ∧D 6= 0) (1)

≤ Pr(Dr = 0) (2)

≤ Pr(
∑
k

dikrk = 0) (3)

= Pr(dijrj = −
∑
k 6=j

dikrk) (4)

= Pr(rj = − 1

dij

∑
k 6=j

dikrk) (5)

=
∑

x∈{0,1}n−1

Pr(rj = − 1

dij

∑
k 6=j

dikrk|r−j = x) Pr(r−j = x) (6)

≤
∑

x∈{0,1}n−1

1

2
Pr(r−j = x) (7)

=
1

2
(8)

Line (3) states that Dr = 0 is no more likely than the event that the ith element of Dr is 0, which is
true because the former implies the latter. In Line (6), we condition on the value of r−j using the law
of total probability. The inequality in Line (7) is true because the {ri} are independent and so {rj =

− 1

dij

∑
k 6=j

dikrk|r−j = x} is the event that rj equals some particular value independent of the distribution of

rj . This probability equals 1/2 if the value is 0 or 1 and 0 otherwise.

Remark This proof illustrates the simple yet powerful principle of deferred decisions. When an analysis
includes multiple random variables, we can think of instantiating some of them first and deferring the
remainder. Formally, we use the law of total probability to condition on the values of the variables that we
wish to set first; then we continue the analysis with just the remaining random variables. This principle can
be seen in Lines (4) and (5), where we treat rj as the sole random variable in order to obtain the upper
bound of 1/2.

Remark In the general setting of F = GF(d), we can improve this bound to 1/d. We simply choose r
from {0, 1, . . . , d− 1}n—the obvious adaptation. Then the 1/2 in Line (5) is replaced by 1/d.

Remark The written lecture notes contain an error because they condition on r−i rather than r−j , but
r−i is insignificant.

Claim 2. Algorithm 1 runs in O(n2) time.

1-2

Proof It takes linear time to generate r. The matrix operations we perform are, in order, Br, A(Br), and
Cr. These are all multiplication of an (n × n) matrix by a vector of size n, which takes quadratic time. It
takes linear time to check Cr = z.

There is a simple but highly effective way to improve the chance of correctness. We run the algorithm
k times and output a final “yes” if every iteration resulted in a “yes.” Then Pr(error) ≤ 1/2k because the
random bits in each trial are independent and so the outcomes are independent. However, the algorithm is
now O(kn2). Thus, we gain an exponential improvement in correctness at a linear cost in runtime. This
technique can be applied generally, and we will often use it in this class.

In sum, we gained a speed-up for verifying matrix products by using matrix-by-vector multiplication
rather than matrix multiplication. The probability of correctness is the probability that it correct to check
a necessary condition.

3 Fingerprinting

This section describes an application of randomized algorithms to a problem in information theory: the
fingerprinting problem. This problem involves two agents A and B who own large databases and who
are separated by a long distance. They would like to check whether their databases are equal. However,
communication is costly, so they want to use as little communication as possible. Formally, given n-bit
strings a and b belonging to A and B respectively, we must check whether a = b with the minimum number
of bits of communication between A and B.

It is easy to see that an optimal, always correct deterministic algorithm is for A to send a to B, allowing
B to directly check a = b. This takes n bits of communication. With randomization, however, we need
significantly fewer bits (Algorithm 2).

Algorithm 2 Fingerprinting algorithm

1: input: agents A and B, their n-bit strings a and b
2: A chooses a prime p ∈ [2 . . . x] uniformly at random, where x = cn lnn // c explained in Claim 3
3: A sends (p, a mod p) to B
4: B computes b mod p
5: B returns the result of checking a mod p ≡ b mod p

To summarize the algorithm, a prime p is selected randomly; a and b are compared modulo p. The only
communication is A sending p and a mod p to B.

Claim 3. For any c > 0, we can configure Algorithm 2 to be incorrect with probability at most 1/c + o(1),
where o(1) is with respect to n. This c is the same as that in Line 2 in Algorithm 2.

Proof Algorithm 2 gives an incorrect answer in the case a 6= b but a mod p ≡ b mod p. We bound the
probability of this event.

Pr(a mod p ≡ b mod p) = Pr(p divides a− b) (9)

=
number of distinct primes that divide a− b

number of primes in [2 . . . x]
(10)

≤ n

x/ lnx
=

n lnx

x
(11)

=
n lnx

cn lnn
=

1

c

lnx

lnn
(12)

=
1

c

ln(cn lnn)

lnn
=

1

c

lnn + ln(c lnn)

lnn
=

1

c
(1 +

ln(c lnn)

lnn
) (13)

=
1

c
+

ln(c lnn)

c lnn
=

1

c
+ o(1) (14)

1-3

Line (10) states that the probability of picking a random prime that divides a−b is equal to the ratio between
the number of distinct primes that divide a − b and the number of primes we are choosing from when we
pick our random prime p. This holds because we pick p ∈ [2 . . . x] uniformly at random.

Line (11) is obtained by approximating the numerator and denominator in Line (10). Since a and b are
n-bit strings, a − b is as well, so a − b ≤ 2n. Since prime numbers are ≥ 2, the number of distinct primes
that divide a− b (the numerator) is no greater than n because if we multiply together more than n numbers
that are at least 2, then we get a number greater than 2n. To approximate the denominator, we invoke the
prime number theorem, which states that the number of primes less than or equal to x is roughly x

ln x .
In Lines (12) and (13), we use the fact that x = cn lnn.

Remark The written notes contain an error in the statement of the prime number theorem by giving the
formula as x/ log2 x; the natural logarithm should be used instead. Fixing this error eliminates the need for
the constant 1.26.

According to the above claim, when c is large, then the algorithm has a high chance of being correct.
The rationale behind this is that x is proportional to c, so c large implies a larger range [2 . . . x] from which
to pick p. Thus, larger c means that it is less likely that p will be a factor of a− b.

Claim 4. Algorithm 2 uses O(log n) bits of communication.

Proof The numbers transmitted are p and a mod p, which are each at most x. Since x is log2 x bits, the
number of bits transmitted is at most 2 log2 x = 2 log2(cn lnn) = O(log(n log n)) = O(log(n2)) = O(log n).

In a nutshell, the randomized fingerprinting algorithm gives an exponential decrease in the amount of
communication at an arbitrarily small cost in correctness, by using a more efficient representation of the
data—modular arithmetic—in exchange for a small loss of information.

4 Max Cut

This section demonstrates how randomization can lead to amazingly elegant proofs of nonrandom facts. In
graph theory, a cut C = (S, S̄) in a graph G = (V,E) is a partition of V into sets S and S̄. An edge
(u, v) ∈ E crosses C if u and v belong to different sets. Let ΓC ⊆ E denote the set of edges that cross
C. By giving a randomized algorithm (Algorithm 3), we can prove the following theorem about cuts in a
surprisingly simple manner. It can be proved without any notion of randomness as well, but to do so is much
harder by comparison.

Algorithm 3 Random cut algorithm

1: input: a graph G = (V,E)
2: S ← ∅, S̄ ← ∅
3: for v ∈ V do
4: flip a fair coin with outcome O
5: if O = Heads then
6: add v to S
7: else
8: add v to S̄
9: end if

10: end for
11: return (S, S̄)

To summarize the algorithm, the vertexes are placed in S or S̄ independently and uniformly at random.

1-4

Theorem 5. In any graph G = (V,E), there exists a cut C such that |ΓC | ≥ |E|/2.

Proof The key idea is that in a random cut, the expected number of crossing edges equals |E|/2, so there
must be some cut with at least |E|/2 crossing edges.

First we execute Algorithm 3 to obtain a cut C = (S, S̄). For any edge e ∈ E, Pr(e ∈ ΓC) = 1/2 because
there are four equally likely ways for the endpoints of e to be classified, and the endpoints are in different
sets in exactly two of these ways. To be explicit, if e = (u, v), then we could have u, v ∈ S; u ∈ S and v ∈ S̄;
u ∈ S̄ and v ∈ S; or u, v ∈ S̄. Since the classifications of u and v are independent, each of these outcomes is
equally likely.

For any edge e, let Xe = I{e ∈ ΓC}, where I{·} is the indicator function. Let X =
∑
e∈E

Xe denote the

number of crossing edges. Then E[X] =
∑
e∈E

E[Xe] =
∑
e∈E

Pr(e ∈ ΓC) =
∑
e∈E

1/2 = |E|/2.

Therefore, there exists a possible outcome of the algorithm that returns a cut C such that |ΓC | ≥ |E|/2.
This is because the expectation is taken with respect to the possible outcomes. If every outcome led to a cut
with fewer than |E|/2 crossing edges, then the average number of crossing edges would also be fewer than
|E|/2.

Remark This proof is a typical example of a certain probabilistic technique. In general, to prove the
existence of an object O with property P , we show that Pr(∃O with P) > 0. Here we did so by using the
fact that not every item can be below (or above) the average. This implied that Algorithm 3 has a positive
probability of returning a cut with the desired property.

In sum, we analyzed the behavior of a simple randomized algorithm to construct a proof a non-obvious
fact about graph cuts. The main takeaway is the sheer elegance of the analysis.

1-5

