
CSE 522: Algorithms and Uncertainty Spring 2017

Lecture 7 — April 17, 2017

Lecturer: Nikhil R. Devanur

In this class, we will continue to discuss applications of the experts problem.

1 Boosting

Recall the PAC learning setting: there is a distribution D over examples of feature and label pairs
(x, y). The goal is to accurately predict the label y given the feature x. We define a “weak learner”
and a “strong learner” as algorithms whose errors are slightly better than a random guess, and
almost perfect, respectively.

Definition 1. A weak (resp. strong) learner is an algorithm that given any distribution D (explicit,
or with sample access), outputs a hypothesis halg such that for some γ > 0 (resp. ε > 0),

errD(halg) ≤ 1

2
− γ (resp. ≤ ε).

In particular, suppose that we have a given training set of examples,

{(x1, y1), (x2, y2), . . . , (xm, ym)},

and the distribution given to the strong learner is the empirical distribution over these examples.

For the weak learner we will assume that halg is in some given set of hypothesis H, and for the
strong learner,

halg = wt-majority(H, ·, α(·)),

for some set of weights α(·).

1.1 Adaboost

In the last lecture we saw how to do boosting using the experts algorithm. This has a couple of
disadvantages.

• You need to know the value of γ ahead of time.

• The error of the strong learner depends on γ, which is the worst case error of the weak learner.

An alternate boosting algorithm, called Adaboost, addresses both these drawbacks. You don’t need
to know γ (although you still need to make the same assumption about the worst case error), and
the error of the strong learner depends on the actual errors observed during the run of the algorithm.
Improving any one of these errors will improve the error of the strong learner. The algorithm is
similar to the one we saw for the experts problem. In each round t ∈ [T],

1

1. it maintains a weight wt(i) for each example in the training set (initialized to 1 for t = 1),

2. runs the weak learner on the probability distribution Dt = wt(·)/Wt, to find a hypothesis ht,

3. with errDt(ht) =: εt <
1
2 ,

4. and updates the weights as wt+1(i) := wt(i)
(

1−εt
εt

)1(h(xi)6=yi)
.

The main difference from applying the algorithm for the experts problem is the update. The update
depends on the error εt of the hypothesis ht found by the weak learner in round t. If the error is 1

2 ,
then the update doesn’t change the weights and we will be stuck. This is why we need the error to
be bounded away from 1

2 . As the error decreases, the term 1−εt
εt

increases, so the update is more
aggressive. At the other extreme, if the error is 0, then we just use the hypothesis found in that
round since it correctly labels all the examples. Notice that 1−εt

εt
is greater than 1, therefore the

weights of the examples that are wrongly labeled increases. This ensures that these examples are
more important, and are more likely to be correctly labeled by the weak learner in the next round.
The eventual strong learner is once again a weighted majority, but this time the weights of the hts

also depend on the εts. Let α(ht) := log
(

1−εt
εt

)
. The strong learner then predicts

Adaboost-predict(x) := wt-majority({h1, h2 . . . , hT }, x, α(·)).

Theorem 1. Let γt = 1
2 − εt. Let Demp be the empirical distribution over the training set. Then

errDemp(Adaboost-predict) ≤ exp(−2
∑
t∈[T]

γ2
t).

While the training error reduces with more rounds, the generalization error increases with T . Hence,
(in theory as well as in practice) we should pick a T that optimizes the sum of the two errors.

2 Yao’s minmax principle

An important application of zero sum games is to the analysis of algorithms. In particular, suppose
we are interested in understanding the fastest run time required to solve a particular problem.
Suppose we fix the size of the input to say n bits, and we want to understand which algorithm
achieves the fastest worst-case running time for this problem. Similarly, we could consider any
performance measure, such as the approximation factor, or the regret. Hence the experts problem
itself can be thought of as a zero sum game!

The statement naturally has a min-max flavor to it, so it’s not surprising that this is a zero sum
game. We need to define a finite set of algorithms. Once we have a trivial upper bound on the
running time, one can consider all Turing machines of a certain size, since the size is bounded by
some function of the running time. Let AD denote the set of all such Turing machines, i.e., the set
of all deterministic algorithms, and let AR denote the set of all distributions over AD, i.e., the set of
all randomized algorithms. Let I denote all n bit strings. Then the quantity we are interested in is

min
a∈AR

max
i∈I

Perf(a, i),

2

where Perf(a, i) is the (expected) performance measure we are interested in, such as the running
time or the regret, of the algorithm a on the input i. This is a zerosum game with the row player
strategy set being AD and the column player strategy set being I, and the payoff is T (a, i). From
the min-max theorem, we have that

min
a∈AR

max
i∈I

T (a, i) = max
D∈∆I

min
a∈AD

Ei∼D[T (a, i)].

The RHS in the above has the following interpretation: it is the average case running time when the
inputs are drawn from a distribution D, and a deterministic algorithm is tailored to this distribution.

The main application of this is to prove lower bounds. It is often easier to come up with a particular
distribution D, for which one can argue that every deterministic algorithm a must have an average
performance measure higher than something. This implies that the same lower bound holds for any
randomized algorithm in the worst case.

The less common application is to show existential upper bounds/algorithms. By designing an
algorithm that works well in the average case, for any given distribution over the inputs, one can
conclude that there is some algorithm that has the same performance bound in the worst-case.
However, this doesn’t actually give us one such algorithm.

3 Experts for combinatorial problems

Suppose every day, we travel from work to home, and have the option of using one of many routes.
Since we don’t like to sit in traffic, we wish to minimize the time we spend in commuting. Suppose
we don’t have any idea what the traffic on any road is going to be. How should we then choose
our daily route? This is formalized in the following problem. There is a given graph G = (V,E),
and two special nodes s and t ∈ V . Let P be the set of all simple paths in G from s to t. In every
round t ∈ [T], we do

• Pick a path Pt ∈ P.

• Observe the delays on all the edges, `t(e), forall e ∈ E. We observe the delays on edges we
don’t take as well.

We wish to minimize the total delay over all the rounds, and compare it to the delay experienced by
the best fixed path on hindsight.

regret =
∑
t∈[T]

∑
e∈Pt

`t(e)−min
P∈P

∑
e∈P

`t(e).

This is an instance on the experts problem, where the set of experts is P and `t(P) =
∑

e∈P `t(e).
The problem with this reduction is that the number of paths maybe exponential in the size of the
graph, therefore running the experts problem will take exponential time. The same issue arises with
any combinatorial problem such as the minimum spanning tree, or a min-cost matching problem.
One would ideally like an algorithm with regret comparable to that of the experts problem, while
running in time polynomial in the graph size.

The solution to all these different problems is to generalize the experts problem to allow arbitrary
convex sets of experts, just like we generalized the zero sum game strategies to allow arbitrary

3

convex sets of strategies. We define this generalization now, and in the rest of the lecture, see an
algorithm for it. The key property of the problems we consider is that

• each solution (a path, a spanning tree, or a matching) can be thought of as a vector in a
lower dimensional space. E.g., a path P is represented by an indicator vector xP ∈ RE , where
xP (e) = 1 if e ∈ P , and is 0 otherwise. The set of randomized strategies is simply the convex
hull of all the corresponding vectors.

• With this representation, the loss is a linear function, i.e., `t(P) = `t · xP , where `t ∈ RE is
the vector of losses for each edge.

We therefore consider the following generalization of experts. The set of experts is an arbitrary
convex set K ⊆ Rn, which is given. For t = 1..T ,

• Pick xt ∈ K.

• See `t ∈ Rn.

The loss of the algorithm in round t is `t(alg) = `t · xt. The goal is to minimize the regret, defined
as

regret = `1..T (alg)−min
x∈K

`1..T · x.

We will assume the following boundedness property

∀x ∈ K,∀t ∈ [T], `t · x ∈ [0, 1].

Also, as in the zero sum games, we will assume that the following optimization problem is easy to
solve for K (and define a new notation, M(·),):

∀` ∈ Rn, solve M(`) := arg min
x∈K

` · x.

When the minimizer is not unique, we break ties arbitrarily, for the definition of M(·).

The experts problem is indeed a special case of this more general problem, by letting K = ∆n. Each
corner of the simplex represents an expert. M(`) is simply the expert corresponding to the smallest
co-ordinate.

3.1 Be the leader

We will first analyze a hypothetical algorithm, which we cannot actually implement. The reason is
that the algorithm uses the knowledge of `t to define xt, which is actually not allowed; this is just
for the sake of analysis.

Algorithm Be the leader (btl) :

Pick yt = M(`1..t).

The loss of this algorithm is denoted by `t(btl) = `t · yt. The main insight we need from this
algorithm is that this has no regret.

4

Lemma 1.
`1..T (btl) ≤ min

x∈K
`1..T · x = `1..T · yT .

Proof. The proof is by induction on T . Note that for T = 1, the statement is trivial. Suppose that
the statement of the theorem is true for T − 1 rounds, i.e.,

`1..T−1(btl) ≤ `1..T−1 · yT−1.

We will now argue that it holds for T rounds as well. Since yT−1 is the minimizer of `1..T−1, the
above inequality implies that

`1..T−1(btl) ≤ `1..T−1 · yT .

The inductive step now follows by adding `T · yT to both sides of this inequality.

3.2 Follow the leader

A more reasonable algorithm is the following algorithm, which does the same as btl, except for the
unreasonable part of knowing `t.

Algorithm Follow the leader (ftl) :

Pick xt = M(`1..t−1).

The loss of this algorithm is denoted by `t(ftl) = `t · xt. Notice that this algorithm is always one
step behind btl, i.e.,

xt = yt+1.

This implies that the difference in losses between the two algorithms is bounded by the number of
times the leader changes.

Lemma 2.
`1..T (ftl)− `1..T (btl) ≤

∑
t∈[T]

1(yt 6= yt+1).

This suggests that this algorithm would be good if the leader didn’t change too many times. But
this is not in our control. In any case, we already saw that no deterministic algorithm can get
a sublinear regret even for the special case of the experts problem. Since this algorithm when
specialized to the experts case is a deterministic algorithm, there is no hope of this working.

4 Perturbation/Regularizer

The next idea we introduce is to add a dummy loss vector at time 0. We can then define the analog
of btl and ftl where we include this loss at time 0 in our calculations. Let `0 be some given vector
in Rn.

5

Algorithm Be the perturbed leader (btpl) :

Pick yt = M(`0..t).

Algorithm Follow the perturbed leader (ftpl) :

Pick xt = M(`0..t−1).

Applying Lemma 1 to include `0, we get the following corollary. The proof of this lemma is an easy
exercise.

Lemma 3.
`1..T (btpl) ≤ min

x∈K
`1..T · x+ max

x,y∈K
`0 · (x− y).

In the rest of this section, we will show how to pick `0 in order to get a multiplicative version of
Lemma 2. Pick `0 randomly as follows. For each coordinate i, independently pick a random variable
z(i) from the exponential distribution with parameter ε, i.e.,

P[z(i) > a] = e−εa.

Then set `0(i) to be zi or −zi with equal probability. It is easy to see that the density µ of this
distribution is as follows (by simply multiplying the densities of the individual coordinates, since
they are independent):

dµ(`) =
(ε

2

)n
e−ε‖`‖1 .

Lemma 4.
`1..T (ftpl) ≤ (1 +O(εA)) `1..T (btpl),

where A := maxt∈[T] ‖`t‖1, and εA ≤ 1
2 .

Proof. Fix a round t. The proof follows by showing that the distribution of `0 and `0 + `t are similar
to each other. Let µ′ be the distribution of the random variable `0 + `t. Then,

dµ′(`) = dµ(`− `t) =
(ε

2

)n
e−ε‖`−`t‖1 .

We now claim that
dµ(`) ≤ dµ′(`)eε‖`t‖1 ≤ dµ′(`) (1 +O(εA)) . (1)

The second inequality follows from the fact that ex ≤ 1 +O(x) for x ≤ 1
2 . For the first inequality,

subsituting the values of dµ and dµ′, it is equivalent to(ε
2

)n
e−ε‖`‖1 ≤

(ε
2

)n
e−ε‖`−`t‖1eε‖`t‖1 .

Canceling the common terms and taking logs, it reduces to

−‖`‖1 ≤ −‖`− `t‖1 + ‖`t‖1,

which is just the triangle inequality for the ‖ · ‖1 norm, rearranged. Now note that

`t(ftpl) = E`0∼µ[`t ·M(`0 + `1..t−1)], and

6

`t(btpl) = E`0∼µ[`t ·M(`0 + `1..t)] = E`∼µ′ [`t ·M(`+ `1..t−1)].

Notice that the only difference between `t(ftpl) and `t(btpl) is the distribution used, either µ or
µ′. Now from (1) we get that

`t(ftpl) ≤ (1 +O(εA)) `t(btpl).

The lemma follows by summing this over all t.

Now it remains to bound the term maxx,y∈K `0 · (x− y). We do that in the following lemma.

Lemma 5. Let D := maxx,y∈K ‖x− y‖1. Then,

E`0∼µ[‖`0‖∞] ≤ 2 log n

ε
.

max
x,y∈K

E`0∼µ[`0 · (x− y)] ≤ 2D log n

ε
.

Proof. The second inequality follows from the first by Holder’s inequality. The first one is a routine
calculation. (See Exercise 1.)

We can now put it all together to get the regret bound.

Theorem 2.

`1..T (ftpl) ≤ (1 +O(εA)) min
x∈K

`1..T · x+
O(D log n)

ε
,

where A := maxt∈[T] ‖`t‖1, and D := maxx,y∈K ‖x− y‖1, and 0 < ε ≤ 1
2A . By setting ε =

√
D logn
AT

we get the regret bound

regret ≤ O
(√

ADT log n
)
.

Proof. From Lemma 4, we have that

`1..T (ftpl) ≤ (1 +O(εA)) `1..T (btpl).

From Lemmas 3 and 5, we have

`1..T (btpl) ≤ min
x∈K

`1..T · x+ max
x,y∈K

E[`0 · (x− y)] ≤ min
x∈K

`1..T · x+
2D log n

ε
.

Combining the two inequalities above, we get

`1..T (ftpl) ≤ (1 +O(εA)) min
x∈K

`1..T · x+
O(D log n)

ε
.

This completes the first part of the Theorem. For the second part, we simply use the fact that
`1..T · x ≤ T for all x ∈ K, and set ε as in the statement of the theorem.

7

Exercise 1. Let n ≥ 3.

E`0∼µ[‖`0‖∞] ≤ 2 log n

ε
.

Hint: Recall that the absolute values of the coordinates of `0 are independent exponential random
variables with parameter ε. An exponential random variable y with parameter ε has the property
that for any a > 0,

E[y − a|y > a] =
1

ε
.

Let a = log n/ε. Let yi = |`0(i)|. What’s the probability that yi > a? What is E[‖`0‖∞ − a|‖`0‖∞ >
a]? Also recall that max ≤

∑
.

4.1 Recovering the experts regret bound

The experts problem is the special case when K = ∆n. It is easy to check that D = 2 for this case.
Also, if the loss vectors `t ∈ [0, 1], you can also check that `t · x ∈ [0, 1] for all x ∈ K. However, A
could be as large as n. This gives us an extra n factor in the regret bound. How do we get rid of
this?

Exercise 2. Show how to get a regret bound of O(
√
T log n) for the experts problem using Theorem 2.

Hint: Split the loss in one round to n rounds where each expert only incurs loss in one of these
rounds. This should reduce A to 1. How does this affect the loss of the algorithm? What about the
benchmark? Do you want to use the first or the second bound in the Theorem 2?

8

	Boosting
	Adaboost

	Yao's minmax principle
	Experts for combinatorial problems
	Be the leader
	Follow the leader

	Perturbation/Regularizer
	Recovering the experts regret bound

