
CSE 522: Algorithms and Uncertainty Spring 2017

Lecture 5 — April 10, 2017

Lecturer: Nikhil R. Devanur

1 Online Classification

In Online classification, you get a sequence of examples, and the algorithm has to predict the label
for each. We proceed in rounds as follows.

For t = 1..T do

• See xt.

• Predict zt.

• See yt.

The goal is to minimize the number of incorrect predictions.

Minimize
T∑
t=1

1(zt 6= yt)

We introduce some notation:

• `t(alg) = 1(zt 6= yt).

• `1..t(alg) =
∑t

τ=1 `t(alg).

• `t(h) = 1(h(xt) 6= yt).

• `1..t(h) =
∑t

τ=1 `t(h).

Given a hypothesis class H, the performance of the algorithm is measured in terms of the regret
w.r.t. H, which is defined as

regret := `1..T (alg)−min
h∈H

`1..T (h).

(We suppress the dependency on T and other parameters for the sake of simplicity of notation.) We
will consider only finite H here, and we will denote the size by n := |H|.

Ideally we would like to get an algorithm whose regret grows as o(T), i.e.,

lim
T→∞

regret

T
= 0.

1

1.1 Realizable case:

Assume that there is a hypothesis h∗ ∈ H such that for all t = 1..T , we have `t(h) = 0. Let HX
t be

the set of all hypothesis in H that have not made an error until time t, i.e.,

HX
t := {h ∈ H : `1..t−1(h) = 0.}.

We will use a majority rule to define the algorithm. Each hypothesis in HX
t gets a vote, and the

label with the maximum votes is the majority. Define

majority(H, x) = arg max
y
|{h ∈ H : h(x) = y}|.

The “Majority Algorithm” is:

Predict zt = majority(HX
t , xt).

Theorem 1. Regret of the Majority Algorithm is at most log2 n.

Proof. Every time the algorithm makes a mistake, the size of HX
t reduces by more than half,

therefore,
|HX

T+1| ≤ |HX
1 |/2`1..T (alg).

The proof is completed by noting that |HX
1 | = n and |HX

T+1| ≥ 1, since h∗ ∈ HX
T+1.

Remark 1. Compare this to the sample complexity bound for the realizable case.

Randomized Majority: An alternate algorithm is to pick a label with probability proportional
to the number of votes it gets. Alternately, the algorithm is:

• Pick ht ∈ H uniformly at random.

• Predict zt = ht(xt).

Exercise 1. What is the regret of the Randomized Majority algorithm?

1.2 Non-realizable case

In this case we need to suitably weigh the different hypotheses and take a weighted majority vote.
Towards this, we first generalize the majority rule to include weights. Let w(·) : H → R denote a
weight function.

wt-majority(H, x, w(·)) = arg max
y

∑
h∈H:h(x)=y

w(h).

We will use the following (exponential) weight functions, where ε is some parameter in (0, 1/2]:

wt(h) := (1− ε)`1..t−1(h).

The Weighted Majority Algorithm is:

Predict zt = wt-majority(H, xt, wt(·)).

Some more notation:

2

• Wt :=
∑

h∈Hwt(h).

• W (y)
t :=

∑
h∈H:h(x)=y wt(h).

Theorem 2. For the Weighted Majority Algorithm we have that

`1..T (alg) ≤ 2 log n+ 2(1 + ε)min
h∈H

`1..T (h).

Proof. Every time the algorithm makes a mistake, the total weight Wt reduces by a factor of 1− ε/2.

This is because the wrong label got more than half the votes, i.e., W
(1−yt)
t ≥Wt/2.

Wt+1 = W
(yt)
t +W

(1−yt)
t (1− ε) = W

(yt)
t +W

(1−yt)
t − εW (1−yt)

t

≤Wt − εWt/2 = Wt(1− ε/2).

On the other hand, WT+1 is lower bounded as follows.

WT+1 ≥ max
h∈H

wT+1(h) = (1− ε)minh∈H `1..T (h).

The initial total weight, W1 = n. Therefore we get

n(1− ε/2)`1..T (alg) ≥ (1− ε)minh∈H `1..T (h).

Now take logs and use the following fact, from the Taylor series expansion of logs, that x ≤
− log(1− x) ≤ x(1 + x). We get that

log n+ log(1− ε/2)`1..T (alg) ≥ log(1− ε)min
h∈H

`1..T (h)

log n− log(1− ε)min
h∈H

`1..T (h) ≥ − log(1− ε/2)`1..T (alg)

log n+ ε(1 + ε)min
h∈H

`1..T (h) ≥ ε`1..T (alg)/2.

`1..T (alg) ≤ 2 log n/ε+ 2(1 + ε)min
h∈H

`1..T (h).

Exercise 2. Show that the factor of 2 in the above theorem is unavoidable for deterministic
algorithms, i.e., for any deterministic algorithm, there is a sequence of inputs such that

`1..T (alg) ≥ 2min
h∈H

`1..T (h).

This shows that no deterministic algorithm can get a sub-linear regret, i.e., a regret such that
regret/T → 0 as T →∞.

3

Randomized Weighted Majority: Analogous to the unweighted case, we define an alternate
algorithm by picking a label with probability proportional to the weighted sum of votes it gets. The
algorithm is:

• Pick ht = h ∈ H with probability wt(h)/Wt.

• Predict zt = ht(xt).

The following is an equivalent description of the algorithm.

• Predict zt = y with probability W
(y)
t /Wt.

From now on, we will use `t(alg) to denote the expected loss of the algorithm in step t. The regret
is also measured w.r.t. this expected loss.

Theorem 3. Regret of the Randomized Weighted Majority Algorithm is at most 2
√
T log n.

Proof. The proof proceeds very similar to the previous theorem. Every time the algorithm makes a
mistake, the total weight Wt reduces by a factor of e−ε`t(alg). This is where we save the factor of 2,
because we “hedge” against either case. From the definition of the algorithm, we have

`t(alg) = Pzt 6=yt [=]W
(1−yt)
t /Wt.

Using this, and the fact that e−x ≥ 1− x, we get

Wt+1 = W
(yt)
t +W

(1−yt)
t (1− ε) = W

(yt)
t +W

(1−yt)
t − εW (1−yt)

t

= Wt − εWt`t(alg) = Wt(1− ε`t(alg))

≤Wte
−ε`t(alg).

On the other hand, WT+1 is lower bounded as follows.

WT+1 ≥ max
h∈H

wT+1(h) = (1− ε)minh∈H `1..T (h).

The initial total weight, W1 = n. Therefore we get

ne−ε`1..T (alg) ≥ (1− ε)minh∈H `1..T (h).

Now take logs and use the following fact, from the Taylor series expansion of logs, that x ≤
− log(1− x) ≤ x(1 + x). We get that

log n− ε`1..T (alg) ≥ log(1− ε)min
h∈H

`1..T (h)

log n+ ε(1 + ε)min
h∈H

`1..T (h) ≥ ε`1..T (alg)

`1..T (alg) ≤ log n/ε+ (1 + ε)min
h∈H

`1..T (h).

4

To get the regret bound, we use the trivial fact that ∀h, `1..T (h) ≤ T .

`1..T (alg)−min
h∈H

`1..T (h) ≤ log n/ε+ εT.

The regret bound now follows by setting

ε =

√
log n

T
.

2 Online Learning/Learning from Experts

This is a generalization of the online classification problem. Here, each hypothesis is called an
“expert”. There are no examples and labels; instead in every round the algorithm has to pick one of
the experts. Each expert incurs a different loss in each round, and the goal is to minimize the total
loss. The losses can be arbitrary real numbers. Assume for now that they are in the interval [0, 1].
E.g., this can be used to model probabilistic predictions, where the loss is some “penalty” function
based on the predicted probability and the eventual outcome. As we will see in the next class, there
are many other applications of this problem. To formally define the problem, we proceed in rounds
as follows.

For t = 1..T do

• Pick ht ∈ H.

• See `t(h) ∈ [0, 1], ∀h ∈ H.

The loss of the algorithm is `t(alg) := `t(ht). The goal is to minimize the total loss `1..T (alg).

Randomized Weighted Majority: The algorithm from the previous section extends pretty
much as is to this more general problem. The algorithm now is:

• Pick ht = h ∈ H with probability wt(h)/Wt.

Theorem 4. Regret of the Randomized Weighted Majority Algorithm for the problem of learning
from experts is at most 2

√
T log n.

Proof. The proof is almost the same as the previous theorem. We will show the following, after
which the proof is identical.

Wt+1 ≤Wt(1− ε`t(alg)).

From the definition of the algorithm, we have

`t(alg) =
∑
h∈H

Pht=h[`](t)h =
∑
h∈H

wt(h)`t(h)/Wt.

5

Using this, we get that

Wt+1 =
∑
h∈H

wt(h)(1− ε)`t(h)

≤
∑
h∈H

wt(h)(1− ε`t(h))

=
∑
h∈H

wt(h)− ε
∑
h∈H

wt(h)`t(h)

= Wt(1− ε`t(alg)).

Exercise 3. This exercise has 2 parts.

• What if there are gains as well as losses? Suppose `t(h) ∈ [−1, 1]. What is the algorithm?
What is the regret bound?

• Bonus: generalize this further when `t(h) ∈ [−a, b] for some a, b > 0.

6

	Online Classification
	Realizable case:
	Non-realizable case

	Online Learning/Learning from Experts

