
CSE 522: Algorithms and Uncertainty Spring 2017

Lecture 4 — April 7, 2017

Lecturer: Anna R. Karlin

These rough notes follow lectures and notes by Avrim Blum, in some parts, verbatim.
However, any errors are mine.

Our growth function/VC dimension bounds are nice but have two drawbacks that we’d like to
address:

1. computability/estimability: If we don’t understand H very well, might be hard to compute
the VC-dimension exactly or otherwise get a good estimate of H[2m].

2. Tightness: There are two sources of loss: (a) We did a union bound over the labellings of the
double-sample S, S′, which is overly pessimistic if many of the splittings are very similar to
each other. (b) We did worst-case over S, whereas we would rather do expected case over S,
or even just have a bound that depends on our actual training set.

The next set of results will address both of these. What we will see is that we can capture how
rich a family of hypotheses is by measuring the degree to which it can fit random noise.

1 Rademacher complexity

Definition 1.1. For a given set of data S = x1, ..., xm and class H of functions from X to {−1, 1},
define the empirical Rademacher complexity of H as:

RS(H) = Eσ

[
max
h∈H

1

m
(
∑
i

σi · h(xi))

]

where σ = (σ1, ..., σm) is a random {-1,1} labeling.

This measures the correlation of the best function in the class to a random labeling. The Rademacher
complexity captures the complexity of the class on the sample itself and is therefore distribution
dependent, in contrast to VC dimension.

• If |H(S)| = 1, then the Rademacher complexity is 0.

• If |H(S)| = 2|S|, then the Rademacher complexity is 1.

Definition 1.2. We define the (distributional) Rademacher complexity of H as:

RD(H) = ES [RS(H)].
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We will prove the following theorem:

Theorem 1.3. For any class H and distribution D over samples, if we see m examples then with
probability at least 1− δ every h ∈ H satisfies

errD(h) ≤ errS(h) +RD(H) +
√

(ln(2/δ)/2m)

≤ errS(h) +RS(H) + 3 ·
√

(ln(2/δ)/2m).

Remark 1.4. We will see that this bound in the worst case is the same as the VC dimension bound,
but in some cases, much much better.

Remark 1.5. Notice that the first line takes an expectation over S. The second line looks at the
actual S. So this is a distribution dependent bound. However, the bound is still worst case over
true hypothesis, so we don’t expect overfitting less than 1/

√
m, e.g. if the true function is the coin

flip function.

For the proof, we will need the following useful tool called McDiarmid’s inequality. This generalizes
Hoeffding bounds to the case where, rather than considering the average of a set of independent
RVs, we are considering some other function of them. Specifically,

Theorem 1.6 (McDiarmid’s inequality). Say X := (X1, ..., Xm) are independent RVs, and φ(X1, ..., Xm)
is some real-valued function. Assume that φ satisfies the Lipschitz condition. That is,1

|Φ(x′i,x−i)− Φ(xi,x−i)| ≤ ci.

if Xi is changed, φ can change by at most ci. Then:

Pr[φ(X) > E[φ(X)] + ε] ≤ e−2·ε2/
∑

i c
2
i

Remark 1.7. For example, if all ci ≤ 1/m (which would be the case if φ(X) =
∑

iXi/m and each
Xi ∈ {0, 1}), we get:

Pr[φ(X) > E[φ(X)] + ε] ≤ e−2·ε2·m.

just like Hoeffding.

Proof. The first step of the proof is to simplify the quantity we care about. Specifically, let’s define

MaxGap(S) = max
h∈H

[errD(h)− errS(h)].

We want to show that with probability at least 1− δ, MaxGap(S) is at most some ε.

As a first step, we can use McDiarmid to say that with high probability, MaxGap(S) will be close to
its expectation. In particular, the examples xj are independent random variables and MaxGap(S)
can change by at most 1/m if any individual xj in S is replaced (because the gap for any specific

1We use the notation f(xi,x−i), as a shorthand for f(x1, . . . , xi, . . . , xn).
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h can change by at most 1/m). So, using MaxGap as our ”φ” in McDiarmid’s Inequality, with
probability at least 1− δ/2, we get:

MaxGap(S) ≤ ES [MaxGap(S)] +
√
ln(2/δ)/(2m).

So, to prove the first line of the theorem, we just need to show that

ES [MaxGap(S)] ≤ RD(H). (1)

Note that the second line of the theorem follows immediately from the first line plus an application
of McDiarmid to the random variable RS(H) (since a single example changes RS(H) by at most
2/m). So, we just need to prove the first line.

The next step is to do a double-sample argument like we did before. Specifically, let’s rewrite
errD(h) as ES′ [errS′(h)], where S′ is a new set of m points drawn from D. So, we can rewrite
ES [MaxGap(S)] as:

ES
[
max
h∈H

ES′ [errS′(h)− errS(h)]

]
≤ ES,S′

[
max
h∈H

(errS′(h)− errS(h))

]
The inequality follows from the fact that in the rightmost term we get to pick h after seeing both
S and S′.

If we let S = x1, ..., xm and let S′ = x′1, ..., x
′
m then we can rewrite this as:

ES,S′
[

max
h∈H

1

m

∑
i

[errx′i(h)− errxi(h)]

]

where
errx(h) = 1h(x)6=f(x).

Now, as in the VC proof, let’s imagine that for each index i, we flip a coin to decide whether to
swap xi and x′i or not before taking the max. This doesn’t affect the expectation since everything
is i.i.d. So, letting σi ∈ {−1, 1} at random, we can rewrite our quantity as:

ES,S′,σ

[
max
h∈H

E

[
1

m

∑
i

σi[errx′i(h)− errxi(h)]

]]

Thus, we have

ES [MaxGap(S)] ≤ ES′,σ

[
max
h∈H

1

m

∑
i

σierrx′i(h)

]
+ ES,σ

[
max
h∈H

1

m

∑
i

−σierrxi(h)

]

since the gap is only larger if allow the two h’s to differ

= 2ES,σ

[
max
h∈H

1

m

∑
i

σierrxi(h)

]

by symmetry, since σi is random {−1, 1}.
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Finally, we will show that this is equal to RD(H). To see this, we observe that, since xi is random
from distribution D and σi is random in {−1, 1}, the following random variables for each fixed xi
have the same distribution. (In what follows, only σi is random.)

σih(xi) = σif(xi)h(xi) = σi(1− 2errxi(h))

= −σi(1− 2errxi(h))

= 2σi · errxi(h)− σi

Therefore,

RD(H) = ES,σ[max
h∈H

1

m
[
∑
i

σih(xi)]] = ·ES,σ[max
h∈H

1

m

∑
i

(2σi·errxi(h)−σi)] = 2·ES,σ[max
h∈H

1

m
[
∑
i

σi·errxi(h)]].

This completes the proof of (1).

2 Discussion

Relating Rademacher complexity and VC dimension

Relating Rademacher and VC: We first observe that the bounds based on Rademacher complexity
are essentially as good as our VC bounds (and sometimes much better). In particular, let’s consider
how big RS(H) can be? Fix some h. Then since

σih(xi) = 21h(xi)=σi − 1,

P

[
1

m

∑
i

σih(xi) ≥ 2ε

]
= P

[
1

m

∑
i

(21h(xi)=σi − 1) ≥ 2ε

]

= P

[
1

m

∑
i

1h(xi)=σi ≥
1

2
+ ε

]
≤ e−2mε2

by Hoeffding. Therefore

P

[
∃h ∈ H[m] s.t.

∑
i

σih(xi) ≥ 2εm

]
≤ H[m]e−2mε

2

setting this to be at most δ means that, with probability at least 1− δ, if

m ≥ 1

2ε2
ln

(
H[m]

δ

)
,

then
RS(H) ≤ 2ε.

So, RS(H), which is the expected maximum correlation really can’t be much higher than what we
had before and probably is lower.
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An example

[This example is from lecture notes by Clayton Scott.]

Suppose that {A1, A2, . . . , Ak} is a fixed partition over instances X. Let H be the set of hypotheses
that are constant on each part Ai.Then |H| = 2k. We will abuse notation below and refer to h(Ai)
as the value h takes on each element in Ai.

The VC-dimension of H is clearly k. Let’s see what we get from the Rademacher complexity.

We have

RS(H) = Eσ

[
max
h∈H

1

m
(
∑
i

σi · h(xi))

]

=
1

m
Eσ

 k∑
j=1

max
h∈H

h(Aj)
∑

i | xi∈Aj

σi

.
Now observe that

E

max
h∈H

h(Aj)
∑

i | xi∈Aj

σi

 = E

∣∣∣∣∣∣
∑

i | xi∈Aj

σi

∣∣∣∣∣∣
,

since each σi ∈ {−1,+1}. Thus,

Eσ

max
h∈H

h(Aj)
∑

i | xi∈Aj

σi

 = E


√√√√√
 ∑
i | xi∈Aj

σi

2
 ≤

√√√√√E

 ∑
i | xi∈Aj

σi

2
by Jensen’s Inequality applied to the square root function (which is concave). Finally, since

E [σiσj ] =

{
0 i 6= j

1 i = j√√√√√E

 ∑
i | xi∈Aj

σi

2 =
√
mj , where mj = |i | xi ∈ Aj | .

Therefore,

RS(H) =
1

m

k∑
j=1

√
mj .

Thus, if D generates examples uniformly at random and, say, mj = m/k, then RS(H) =
√
k/m.

Unless m > k, this doesn’t give any bound on the generalization error.

On the other hand, if the distribution D is such that almost all of the examples are from one part,
say A1, then

RS(H) ≈ 1√
m
.
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3 Notes

For detailed expositions of this material, including references, see Shalev-Schwartz and Ben-David [3]
(chapter 26) and Mohri, Rostamizadeh and Talwalkar [2] (chapter 3).
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