
CSE 522: Algorithms and Uncertainty Spring 2017

Lecture 11 — May 8, 2017

Lecturer: Nikhil R. Devanur

1 Bandits

No, this is not about highway robbery. When we discussed the shortest path problem with unknown
delays, one of the assumptions was that we see the delays on all the edges. We now relax this
assumption, and the resulting problems are studied under various names with the word “bandit” in
them. Let’s start with the most general online convex optimization problem.

Definition 1 (Convex bandits). The action space is an arbitrary set S ⊆ Rn, which is given ahead
of time. For t = 1..T ,

• Pick wt ∈ S.

• Simultaneously, the adversary picks a convex loss function `t.

• See `t(wt) ∈ Rn.

The goal is to minimize the regret, defined as

regret =
T∑
t=1

`t(wt)−min
u∈S

T∑
t=1

`t(u).

The main difference from the “full information” setting is the part where the feedback to the
algorithm is just the evaluation of the function at wt, instead of the full convex function as before.

Remark 1. For simplicity, we will consider oblivious adversaries, where the adversary picks all
the loss functions ahead of time. For deterministic algorithms, there is no difference betweeen an
oblivious and an adaptive adversary, since the adversary can simulate the algorithm. For randomized
algorithms, such a simulation will only give the probability distribution over the actions, and not the
actual action itself. An adaptive adversary can pick his loss functions based on the actual actions
the algorithm picked in previous rounds (but not the current round), and is therefore potentially
more powerful. In this case, we may measure the expected regret, but now the loss functions are
themselves random variables. Most of the results do hold for adaptive adversaries, but we need to
define what is called the pseudo regret. We will not get into the details of this in this class.

1.1 Applications

Bandit problems were first studied as a problem in clinical trials. Patients are to be assigned to one
of many potential treatments, where each treatment has different effectiveness, i.e., probability of
curing a patient. We would like to cure as many patients as possible, without knowing a priori the
effectiveness of each treatement.

1



Recently, bandit algorithms have found many uses in the online world. For instance, supose you
have many different versions of a user interface and you want to deploy the most effective one, in
terms of a specific response you want to elicit. Each interface has an effective response rate that
you don’t know about. Similarly, search engines would like to estimate the relevance of a result or
an advertisement, which can be thought of as being roughly equivalent to the probability of click.
We would like to maximize clicks, but we start with no knowledge of these probabilities.

1.2 Special cases:

In the full information setting we saw that there was essentially no difference between convex loss
functions and linear losses. We could essentially replace `t by its gradient. This equivalence breaks
down in the bandit case because of the information structure. The algorithm tries to learn about
the loss function by carefully exploring the action space, and the information it can gather this
way crucially depends on whether the loss is linear or convex. We therefore deal this special case
separately. (In fact, the convex version is quite hard and only recently have there been reasonable
algorithms for it. We will probably not have time for this.)

Definition 2 (Bandit linear optimization (BLO)). This is the special case of Convex bandits where
the loss functions are linear. In this case, we will abuse notation and write

`t(u) := `t · u.

Another equivalence we used in the full information setting was the equivalence between an action
space and the convex hull of its representation in a vector space. Once again this equivalence does
not quite hold in the bandit setting: suppose u ∈ S was actually a convex combination of the
allowed actions. In the full information setting, we said we could randomize and pick an action in
the action space whose expectation was u. Since the losses were linear, this made no difference in
the expected loss. Once agin, the bandit information changes things. Whether you observe `t(u) or
`t(a) where a is a random variable whose expectation is u can make a difference. We will make this
explicit when it comes up.

As a special case, we consider the bandit version of the experts problem, where the action space
was a finite set of size n, which we thought of as vertices of a unit simplex in Rn. This version is
simply called the Multi-armed bandit problem.

Definition 3. This is the special case of BLO where S is the unit simplex in Rn and the algorithm
is required to pick one of the corners in each round.

Further, in the shortest path problem, there are 2 versions. One, where you only observe the total
delay of the path you have chosen. This corresponds to BLO as we have defined. The other version
is where you observe the delay on each edge in the path. This version is called ‘semi-bandit’ feedback.
Such feedback makes sense mostly in combinatorial settings, where in each round, you are required
to pick some combinatorial set that satisfies certain property, such as the set of edges with the
property that they form a path between two given nodes in a graph.

Definition 4 (Combinatorial semi-bandits). This is once again a special case of BLO with the
following properties. The action set A is some collection of subsets of [n]. We represent elements

2



of A by their indicator vectors in Rn.1 If the algorithm plays at in round t, then it observes each
co-ordinate of the loss vector `t that corresponds to an element in at.

1 the incidence vector of a subset a ⊂ [n] is a vector of 0s and 1s, where the co-ordinate i is 1 if and only if i is an
element of the subset a.

3


	Bandits
	Applications
	Special cases:


