
CSE 522: Algorithms and Uncertainty Spring 2017

Lecture 10 — May 5, 2017

Lecturer: Anna R. Karlin

Acknowledgement

Lectures 8-10 are drawn largely from the monographs of Elad Hazan and Shai Shalev-Schwartz on
online optimization. The references in these notes are extremely incomplete. For full references see
these two monographs as well as the notes on online optimization by Sebastien Bubeck.

1 Application: Exponentiated gradient

[Kivinen and Warmuth, 1997] We next consider instantiating FTRL using the entropic regularizer
(i.e., the negative entropy function) with predictions confined to the probability simplex. Concretely
for p ∈ ∆n where ∆n is the probability simplex, we take our regularizer to be

R(p) =

d∑
i=1

pi ln pi.

To analyze this, we need a few preliminaries.

The entropic regularizer is strongly convex w.r.t. `1 norm

This regularizer is 1-strongly convex with respect to the `1 norm. To prove this, we need to show
that

R(p)−R(q)−∇R(q) · (p− q) ≥ 1

2
||p− q||21. (1)

The left hand side of the above is the Bregman divergence of the negative entropy function and
is equal to (1) ∑

i

pi ln pi −
∑
i

qi ln qi −
∑
i

(ln qi + 1)(pi − qi) =
∑
i

pi ln

(
pi
qi

)
This is also called the relative entropy or KL-divergence between the distributions p and q. It
is a measure of the distance (though not symmetric) between two probability distributions.

Note that in the above definition we have

0 log
0

0
= 0 log

0

q
= 0 and p log

p

0
=∞.

1

Remark 1.1. We all know that the entropy of a random variable measures the uncertainty that
exists as to the value of that random variable; the average amount of information received when
the value of the random variable is observed, and also the average amount of “surprise” one receives
upon learning the value of the r.v.. We also know that if we want to send messages distributed
according to p, then asymptotically the optimal encoding has expected length equal to the entropy.

Now, suppose that we think the distribution is q, and we design the code optimally for that
distribution, but we then use this encoding to send messages distributed according to p. Then
the relative entropy is the number of additional bits I will need to send relative to what I would
have had to send if the code had been optimized for p to begin with. In terms of information,
the relative entropy is a measure of the information gained when you revise your beliefs from your
prior distribution q to your posterior distribution q.

Thus, (1) is the same as ∑
i

pi ln

(
pi
qi

)
≥ 1

2

(
d∑
i=1

|pi − qi|

)2

.

This is a famous inequality known as called Pinsker’s Inequality. It says that

D(p||q) ≥ ||p− q||21
2

.

Notice that the right hand side is related to the total variation distance between the two distribu-
tions:

TV (p,q) = sup
A
|P (A)−Q(A)| = 1

2
||p− q||1.

Here is a proof for n = 2. Assume wlog that p ≥ q. Then LHS of Pinsker is

D(p||q) =

∫ p

q

(
p

x
− 1− p

1− x

)
dx

=

∫ p

q

(
p− x

x(1− x)

)
dx ≥ 4

∫ p

q
(p− x)dx = 2(p− q)2.

and the RHS is

1/2(p− q + (1− q)− (1− p))2 = 1/2(4(p− q)2) = 2(p− q)2.

You can then handle the general case using a ”chain rule” for relative entropy. See linked notes on
relative entropy for details.

What FTRL does

Next we determine the probability vector pt+1 that FTRL plays at time t + 1. One way is via
Lagrange multipliers. Alternatively, we can simply observe that given

θ := −
t∑

s=1

∇s,

2

where ∇s = ∇`s(ps), in step t+ 1, FTRL will play

argminp∈∆ − ηθ · p +
∑
i

pi ln pi = argminp∈∆

∑
i

pi ln
(
pie
−ηθi

)
.

(∆ is the probability simplex.) Minimizing the above quantity is the same as minimizing∑
i

pi ln

(
piZ

eηθi

)
, where Z =

∑
j

eηθj .

This is the same as minimizing

D(p||q) where qi =
eηθi

Z
.

Relative entropy is minimized at p = q since for that choice it is 0, and it is always nonnegative.
(Any Bregman divergence is non-negative.)

Summary of what FTRL does

Since

θt+1 = −
t∑

s=1

∇s,

where ∇s = ∇`s(ps), we get

pt+1,i =
pt,ie

−η∇`t(pt)i∑d
j=1 pt,je

−η∇`t(pt)j
.

When losses are linear, this is precisely Hedge.

Performance of exponentiated gradient

Applying the earlier theorem, we have

RT (u) ≤ 2GD
√
T

where D =
√

maxx,y∈S(R(x)−R(y)) =
√

log n, and

||∇`t(pt)||∗ = ||∇`t(pt)||∞ ≤ G.

As you all know D ≤ log n (with equality for the uniform distribution), but a quick proof uses the
fact that D(p||q) ≥ 0 with the substitution q equal to the uniform distribution.

In the experts settings, where `t(x) = `t · x and each component of `t is in [0, 1], we have

||∇`t(pt)||∗ ≤ ||∇`t(pt)||∞ ≤ 1.

Thus, we get the bound,
RegretT ≤ 2

√
T log n.

Thus bound is better than the bound we got using the Euclidean regularizer.

3

2 Another interpretation of FTRL

We now develop an alternative view of FTRL.

2.1 Digression on conjugate functions

There are two ways we can define a convex function: by its value at each point, or by the set of
tangent planes.

Definition 2.1. For function f with domain S, the conjugate function or Fenchel conjugate
of f(·) is defined as

f∗(y) = max
w∈S

(y ·w − f(w)).

It is easy to verify that if
x = argmaxw∈S(y ·w − f(w))

then
y · x− f∗(y)

is a supporting line of f(·) at x, i.e. y is a subgradient at x.

Remark 2.2. We will be interested in applying this to convex functions, but regardless the conjugate
function is convex.

Examples

• If f(x) = x log x (where the domain is R+, with f(0 = 0). Then f∗(y) = ey−1.

• If f(x) = ||x||, then

f∗(y) =

{
0 ||y||∗ ≤ 1

∞ ||y||∗ > 1.

To see this, observe that f∗(y) = supx(yTx − ||x||). Consider two cases. If ||y||∗ ≤ 1, then
yTx ≤ ||x|| for all x of norm at most 1 with equality when x = 0. Therefore the supremum
above is 0.

If ||y||∗ > 1, then there is a x of norm at most 1 such that xTy > 1. Thus

f∗(y) ≥ yT cx− ||cx|| = c(yTx− ||x||)

which tends to infinity as c→∞.

The following facts are immediate from the definition of conjugate function.

• The conjugate function is always convex (maximum of affine functions).

• Fenchel-Young inequality:
f(x) + f∗(y) ≤ x · y.

4

• f∗∗(x) ≤ f(x).

You can find the following fact in any convex optimization book.

Claim 2.3. If f is convex and closed (that is, the epigraph is a closed set), then f∗∗ = f .

Lemma 2.4. Suppose that f is convex and closed. Then

y ∈ ∂f(x)⇐⇒ x ∈ ∂f∗(y)⇐⇒ x = argmaxz(y · z− f(z)).

Proof. Suppose that x = argmaxz(y · z− f(z)). Then

f∗(y) = y · x− f(x).

Therefore,
f∗(w)− f∗(y) ≥ (wx− f(x))− (yx− f(x)) = x(w − y).

Therefore, x ∈ ∂f∗(y). Similarly

f(z)− f(x) ≥ y · z− f∗(y)− (y · x− f∗(x)) = y · (z− x)

so y ∈ ∂f(x).

On the other hand, y ∈ ∂f(x) implies that

f(z)− f(x) ≥ y(z− x) ∀z ∈ S

and therefore
yx− f(x) ≥ y · z− f(z)⇐⇒ x ∈ argmaxz∈S(yz− f(z)).

A similar argument applies for the remaining implication.

Remark 2.5. The conjugate of a differentiable function f on Rn is called the Legendre transform
of the function. In this case ∇f and ∇f∗ are inverses.

z = ∇f∗(∇f(z)).

(And we can write the function f∗(y) = z · ∇f(z)− f(z), where y = ∇f(z).)

Claim 2.6. Let R be a β-strongly convex, closed function (from Rn to R) w.r.t. norm || · ||. Then
R∗ is β−1-smooth with respect to || · ||∗.

Proof. Let
wy = argmaxw(y ·w −R(w)).

R∗(x)−R∗(y) ≤ max
w

(x ·w −R(w))− (y ·wy −R(wy))

By strong convexity of R,

−(R(w)−R(wy)) ≤ −
(
∇R(wy) · (w −wy) +

β

2
||w −wy||2

)

5

and ∇R(wy) = y, so

R∗(x)−R∗(y) ≤ max
w

(
x ·w − y ·wy −

(
y · (w −wy) + ||w −wy||2

β

2

))
.

Letting w −wy := z, the right hand side is equal to

(x− y) ·wy + max
z

[
(x− y) · z− β

2
||z||2

]
.

The maximization is at x− y = βz, and plugging back in yields

(x− y) ·wy +
1

β
||x− y||2 − 1

2β
||x− y||2.

Thus, since wy = ∇R∗(y), we conclude that

R∗(x)−R∗(y) ≥ (x− y) · ∇R∗(y) +
1

2β
||x− y||2.

In other words, R∗ is β−1-smooth.

Also, the convex dual is everywhere differentiable.

2.2 Back to FTRL

So what do conjugate functions have to do with FTRL?

wt+1 = argminw∈S(−θt+1 ·w +R(w))

= argmaxw∈S(θt+1 ·w −R(w))

= ∇R∗(θt+1),

where

θt+1 = −η
t∑

s=1

∇`s(ws).

Remark 2.7. If follows from 2.4 that θt+1 = ∇R(wt+1).

3 FTRL = Online mirror descent [Nemirovsky and Yudin, 1983]

This algorithm is also called ”online mirror descent”; it updates the gradient of the dual of regu-
larizer at sum of gradients of past losses and can be described as follows

Parameters: Strongly convex regularizer R, and η > 0.

Initialization: z1 s.t. ∇R(z1) = 0 and x1 = argminw∈SBR(w||z1)

For each t ≥ 1,

6

1. Play xt and incur loss `t(xt)

2. Observe loss gradient ∇`t(xt).

3. Gradient step: Update zt.

∇R(zt+1) = ∇R(zt)− η∇`t(xt). (2)

Let
zt+1 = ∇R∗ (∇R(zt)− η∇`t(xt)) .

4. Projection step:
xt+1 = argminw∈SBR(w||zt+1).

3.1 Equivalence of (lazy) OMD and FTRL

Lemma 3.1.

argminw∈SBR(w||zt) = argminw∈S

(
−η

t−1∑
s=1

∇s ·w +R(w)

)
.

Proof. The unconstrained minimum w∗t on the right hand side satisfies

∇R(w∗t) = −η
t−1∑
s=1

∇s. (3)

By definition (2), zt also satisfies this. Since R(w) is strictly convex, there is only one solution,
therefore zt = w∗t .

Now consider the Bregman divergence. We have

BR(w||zt) = R(w)−R(zt)−∇R(zt) · (w − zt)

= R(w)−R(zt) + η
t−1∑
s=1

∇s · (w − zt)

by (3). Therefore, BR(w||zt) is minimized at the minimum of

R(w) + η

t−1∑
s=1

∇s ·w

in S, which is precisely wt from FTRL. Therefore, xt = wt.

Remark 3.2. FTRL is not necessarily the same as the ”agile”, i.e., non-lazy, version, of OMD where
the gradient step replaces (2) with

∇R(zt+1) = ∇R(xt)− η∇`t(xt).

Often when people talk about mirror descent, they mean the agile version.

7

3.2 Notes

The offline version of this algorithm was discovered in the 70s by Nemirovski and Yudin. Their
goal was to minimize a convex function with some Lipschitz constant L with respect to some norm.

The mirror descent idea is perhaps motivated by thinking about the approximate change in function
value f(y)− f(x) when the algorithm takes a step, which can be approximated by ∇f(x) · (y− x).
This quantity is the dot product of a vector that lives in the ”primal space”, the space of points,
where distances are measured using one norm, and the latter in the ”dual space”, the space of
gradients, where distances are measured using the dual norm.

If you think about gradient descent, it follows directions of steepest descent, directions opposite to
gradient. This leads to an iteration of the type yt+1 = yt − η∇f(yt). In a sense this is an apples
and oranges combination since the objects yt and ∇f(yt) live in these two different spaces. This
becomes strange if different norms are being used. It’s fine when everything is being measured in
terms of the `2 norm.

In MD, we keep two vectors wt, θt, one in the primal space and one in the dual space. In each
iteration we compute ∇f(t), obtaining a dual vector and the update θt+1 = θt − η∇f(wt) in the
dual space. We map between primal and dual points using a mirror map. If we think of this map
as the gradient of a convex function g∗(·), then the inverse map is the gradient of the conjugate
function.

4 OMD version of Exponentiated Gradient Descent

Say R(x) = x log x =
∑

i xi log xi.Then

∇R(x)i = 1 + log xi.

Hence, OMD becomes the following:

• log(zt+1) = log(zt)− η∇t. Thus,
zt+1 = e−η∇tzt.

• xt+1 = argminw∈SBR(w||zt). Projection according to negative entropy is the same as scaling
by the `1 norm, which gives exactly what we had above, since

BR(p||z) = p ln
(p

z

)
.

8

	Application: Exponentiated gradient
	Another interpretation of FTRL
	Digression on conjugate functions
	Back to FTRL

	FTRL = Online mirror descent [Nemirovsky and Yudin, 1983]
	Equivalence of (lazy) OMD and FTRL
	Notes

	OMD version of Exponentiated Gradient Descent

