
CSE 522: Algorithms and Uncertainty Spring 2017

Lecture 1 — March 27, 2017

Lecturer: Anna R. Karlin

These rough notes follow lectures and notes by Avrim Blum, in some parts, nearly
verbatim. However, any errors are mine.

1 PAC Model

We are given a training set S = {(xi, yi), 1 ≤ i ≤ m}, where each xi is an instance in some space
X, e.g. a feature vector over Rd, and yi is a binary label (classification). For example, xi could be
a set of features of an email message and y could be a label indicating whether it is spam or not.
We assume that

yi = f(xi) where f : X → {0, 1}

is the correct labeling of the message, i.e., the ground truth. We also assume that each xi is drawn
independently from some distribution D over the instance space.

Definition 1.1. A learning algorithm takes as input a training set S whose elements are sampled
i.i.d. from some D over X and produces as output a hypothesis hS ∈ H, where h : X → {0, 1}.

Definition 1.2. For a sample S = {(xi, yi), i = 1 . . .m} and hypothesis h, define the training
error (also sometimes called the empirical error or empirical risk)

errS(h) ,
1

m

m∑
i=1

1h(xi) 6=yi .

The typical learning algorithm will find a hypothesis with minimum training error, that is,

hS := argminh∈HerrS(h).

This is called empirical risk minimization.

Our goal is to understand how big S needs to be so that the empirical risk minimizer hS is very
likely to satisfy hS(x) = f(x). Formally,

Definition 1.3. The generalization error errD(h) of a hypothesis h with respect to a distribution
D is

errD(h) , PX∼D [h(X) 6= f(X)].

Remark 1.4. Clearly, if we are not careful, e.g., allow H to contain all possible functions, it’s easy
to get small training error. But then we are very likely to have large generalization error. This is
called overfitting.

Definition 1.5. Suppose that H is realizable, that is, f(·) ∈ H. We say that the hypothesis class
H is PAC-learnable if there is a function mH : (0, 1)2 → N and a learning algorithm such that
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for any ε, δ > 0 and D, given a random sample S of size at least mH(ε, δ) of correctly labeled data,
the algorithm produces a hypothesis hS ∈ H s.t.

P [errD(hS) < ε] ≥ 1− δ.

In other words, the hypothesis output is probably (with probability 1− δ) approximately cor-
rect(errs with probability at most ε on new samples).

In class, we showed that for H = {decision lists over n boolean vars}, with

mH(ε, δ) ≈ 1

ε

(
n lnn+ ln

(
1

δ

))
labeled examples, and in time polynomial in n and mH(ε, δ), we are able to find a consistent DL
such that with probability at least 1− δ, the generalization error is at most ε.

Remark 1.6. Often when people speak about H being PAC-learnable, they also require that the
algorithm for finding a consistent hypothesis runs in time polynomial in ε−1, δ−1, the size of each
example (e.g. n for the spam example from class), and the size of the representation of a function
in H. In our discussion we aren’t going to worry too much about the running time of finding a
consistent hypothesis or the best hypothesis in the class. We’ll focus on trying to understand the
sample complexity – how much data is needed to get a certain confidence bound. Often it’s the
training data that is expensive to get.

What follows is the most basic sample complexity bound.

Theorem 1.7. Let |S| = m. If m ≥ 1
ε ln

(
|H|
δ

)
, then with probability at least 1− δ, all h ∈ H with

errS(h) = 0 have errD(h) < ε.

Proof. Suppose that h ∈ H and errD(h) ≥ ε. Then

P [errS(h) = 0] ≤ (1− ε)m.

Therefore, using a union bound,

P [∃h ∈ H s.t. errD(h) ≥ ε and errS(h) = 0] ≤ |H|(1− ε)m ≤ |H|e−εm.

Solving for |H|e−εm ≤ δ gives the bound.

1.1 Beyond the realizable setting: uniform convergence

The last result only bounds the chance that a bad hypothesis looks perfect on the data. What if
there is no perfect h ∈ H? This could happen for 2 reasons: First, the correct labeling may not
be in the set H. Second, it may not even be possible to label correctly given the features. For
example, suppose we are trying to construct a classifier for determining if a particular person has a
particular disease based on various medical indicators like blood pressure, temperature, etc. Then
it is unlikely that these indicators are sufficient to uniquely determine if the person has the disease
or not.
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This motivates the notion of “uniform convergence”. Here we try to determine how many samples
are needed to guarantee that all h ∈ H satisfy |errD(h)− errS(h)| ≤ ε with high probability? If we
can show that such a statement holds, then if we are so lucky as to find a hypothesis with small
training error, we can be confident that it has low generalization error as well. This motivates
optimizing over S, even if we can’t find a perfect function. To prove bounds like this, use tail
inequalities (see §3).

Theorem 1.8. If |S| ≥ 1
2ε2

ln
(
2|H|
δ

)
, then with probability at least 1− δ, all h ∈ H have |errD(h)−

errS(h)| < ε.

Proof. Fix h ∈ H and suppose that errD(h) = p. Then by Hoeffding (Theorem 3.1), we have

P [|errS(h)− errD(h)| ≥ ε] ≤ 2e−2|S|ε
2
.

Set to δ and solve.

Remark 1.9. This is worse than previous bound ε−1 has become ε−2 because we are asking for
something stronger.

1.2 Occam’s Razor

Occam’s razor is the notion, stated by William of Occam around 1320, that one should prefer
simpler explanations over more complicated ones. The theorems we just saw give a mathematical
sense in which this is true.

One way we could say that explanations of a certain type are simple is by saying that any expla-
nation in this class can be described with few bits. Since there are at most 2b rules that can be
described with fewer than b bits, we can say

Theorem 1.10. (Occam’s Razor) Fix a description language for rules and consider a training
set S from distribution D. Then with probability 1 − δ, any rule h consistent with S that can be
described in this language using fewer than b bits will have errD(h) ≤ ε for |S| = ε−1(b ln(2/δ)).
Alternatively, with probability at least 1− δ, all rules that can be described with less than b bits have

errD(h) ≤ b ln 2 + ln(δ−1)

|S|
.

1.3 Notes about PAC framework

• This is a distribution-free (prior-independent) model: no assumptions are made about the
distribution from which the training examples are drawn.

• The distribution independence is “mitigated” by the fact that the training examples and the
examples used to define generalization error are drawn from the same distribution.

• The PAC framework deals with learnability of a hypothesis class and not a particular hy-
pothesis. The algorithm knows the class is is trying to optimize over, but not the particular
hypothesis we are looking for.
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2 Improving the measure of complexity for a hypothesis class

So far, we used ln(|H|) as a measure of complexity for a hypothesis class (i.e., bound on sample
complexity). But this is useless when |H| is infinite, and even when it is finite, there are tighter
measures. Again, our question is: how big does S have to be so that whp, errS(h) = 0 implies that
errD(h) ≤ ε.
Example 2.1. Axis-aligned rectangles in R2:

H = {R(x, y) = 1x1≤x≤x2,y1≤y≤y2 for some x1, x2, y1y2 ∈ R}.

Suppose that we are in the realizable case, i.e., there is a true rectangle R∗ that precisely defines
the positive examples. Say we see a sample of size m. How should our learning algorithm work?
One possibility is to find the smallest bounding rectangle for the positive examples. Let’s call this
rectangle R. What is the generalization error after seeing m samples? Clearly, there are no no false
positives. But there could be false negatives. Let’s analyze the probability that errD(R) > ε. This
is precisely the probability of getting an example in R∗ \R.

First, we observe that if the probability of R∗ under D is less than ε then errD(R) < ε. Next
consider four subrectangles of R∗, the minimal rightmost, leftmost, topmost and bottom-most
rectangles inside R∗, for which the probability of a sample under D is at least ε/4. If S contains
an example within each of these rectangles, then P [R∗ \R] ≤ ε. Bad case is if it doesn’t. For each
subrectangle, probability of no samples inside there is at most (1− ε/4)m. So the probability there
is a subrectangle with no sample inside is at most 4(1 − ε/4)m. Setting this to be at most δ and
solving for m shows that

3 Tail Bounds

Theorem 3.1 (Hoeffding bounds). Let X ∼ Bin(m, p), ε ∈ [0, 1]. Then

P
[
X

m
> p+ ε

]
≤ e−2mε2 and P

[
X

m
< p− ε

]
≤ e−2mε2 .

Theorem 3.2 (Chernoff bounds). Let X ∼ Bin(m, p), α ∈ [0, 1]. Then

P
[
X

m
> p(1 + α)

]
≤ e−mpα2/3 and P

[
X

m
< p(1− α)

]
≤ e−mpα2/2.

4 Notes

PAC learning was introduced by Valiant [4] in 1984. For detailed expositions of this material, see
Kearns and Vazirani [1] (chapters 1 and 2) Shalev-Schwartz and Ben-David [3] (chapters 2-4) and
Mohri, Rostamizadeh and Talwalkar [2] (chapter 2).
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