We continue the analysis of Andoni’s algorithm, which uses the exponential distribution $Exp(1)$ given by $P[x > t] = e^{-t}$ for $t \geq 0$ and rescales each f_j using the an independent exponential distribution to get z_j so that with good probability $||z||_\infty$ is a constant factor approximation to $||f||_p$. The algorithm runs a variant of the Count sketch on z in order to approximate $||z||_\infty$. Though the Count sketch does not yield constant factor approximations in general, z is sufficiently skewed that this variant does work well.

More precisely, for each j, define $z_j = f_j / u_j^{1/p}$ where $u_j \sim Exp(1)$ are chosen independently.

The vector z will be part of our analysis but does not directly appear in the description of the algorithm as a streaming algorithm.

Max-stable algorithm for $||f||_p$ approximation:

1. **Initialize:**
2. $k \leftarrow \lceil M^{1-2/p} \log_2 M \rceil$
3. $y \leftarrow$ length k vector of real numbers
4. Use Nisan generator to approximate the following random choices:
5. Choose $u_1, \ldots, u_M \sim Exp(1)$ independently.
6. Choose $h : [M] \rightarrow [k]$ uniformly at random.
7. Choose $g : [M] \rightarrow \{-1, 1\}$ uniformly at random.
8. **Process:**
9. **for each** i **do**
10. $y_h(x_i) \leftarrow y_h(x_i) + c_i \cdot g(x_i) / u_{x_i}^{1/p}$
11. **end for**
12. **Output:** $||y||_\infty = \max\{y_x : a \in [k]\}$.

We will show that the above algorithm produces a factor 4 approximation, say, for $||f||_p$ with probability bounded above 1/2 and hence using the usual median, running $O(\log(1/\delta))$ copies in parallel yields a factor 4 approximation with probability at least $1 - \delta$.
This algorithm corresponds to a sketch matrix of the following form:

\[
\begin{bmatrix}
0 & 0 & -1/u_3^{1/p} & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & +1/u_2^{1/p} & 0 & 0 & 0 & \cdots & -1/u_{M-2}^{1/p} & 0 & 0 \\
0 & 0 & 0 & -1/u_4^{1/p} & 0 & \cdots & 0 & 0 & 0 \\
+1/u_1^{1/p} & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & -1/u_M^{1/p} \\
0 & 0 & 0 & 0 & +1/u_5^{1/p} & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & -1/u_{M-1}^{1/p} & 0
\end{bmatrix}
\]

which is the product of

\[
P_{g,h} = \begin{bmatrix}
0 & 0 & -1 & 0 & 0 & 0 & -1 & \cdots & \cdots & -1 & 0 & 0 & 0 \\
0 & +1 & 0 & 0 & 0 & 0 & +1 & 0 & \cdots & \cdots & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & \cdots & \cdots & 0 & 0 & 0 & 0 \\
+1 & 0 & 0 & 0 & 0 & -1 & 0 & \cdots & \cdots & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & +1 & 0 & 0 & \cdots & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & \cdots & 0 & 0 & -1 & 0
\end{bmatrix}
\]

and

\[
D_u = \begin{bmatrix}
1/u_1^{1/p} & & & & & & & \\
& 1/u_2^{1/p} & & & & & & \\
& & 1/u_3^{1/p} & & & & & \\
& & & \ddots & & & & \\
& & & & 1/u_4^{1/p} & & & \\
& & & & & 1/u_5^{1/p} & & \\
& & & & & & \cdots & \\
& & & & & & & 1/u_{M-2}^{1/p} \\
& & & & & & & & 1/u_M^{1/p}
\end{bmatrix}
\]

The vector \(z = P_{g,h} \cdot f \) and \(y = D_u P_u f \).

Last time we proved

Claim 1: \(\mathbb{P}[||f||_p^2 \leq ||z||_\infty \leq 2||f||_p] > 3/4 \).

In order to prove that \(||y||_\infty \) is a good estimate for \(||z||_\infty \) we need to show that \(z \) is sufficiently skewed.

Claim 2: For any \(H \), \(\mathbb{E}[\# \{ j : |z_j| \geq |f|/H \}] \leq H^p \).
Proof. Let \(Y_j = \begin{cases} 1 & \text{if } |z_j| \geq \frac{||f||_p}{H} \\ 0 & \text{otherwise.} \end{cases} \) Then

\[
\mathbb{E}(\sum_j Y_j) = \sum_j \mathbb{P}[|z_j| \geq \frac{||f||_p}{H}]
\]
\[
= \sum_j \mathbb{P}[\frac{|f_j|^p}{u_j} \geq \frac{||f||_p^p}{H^p}]
\]
\[
= \sum_j \mathbb{P}[u_j \geq \frac{H^p \cdot |f_j|^p}{||f||_p^p}]
\]
\[
= \sum_j \left(1 - e^{-\frac{H^p \cdot |f_j|^p}{||f||_p^p}}\right) \quad \text{since } u_j \sim \text{Exp}(1)
\]
\[
\leq \sum_j \frac{H^p \cdot |f_j|^p}{||f||_p^p} \quad \text{since } e^{-x} \geq 1 - x
\]
\[
= H^p
\]

Therefore, by Markov’s inequality

\[
\mathbb{P}[^\{j : |z_j| \geq \frac{||f||_p}{H} \} \geq 100H^p] \leq 1/100.
\]

We choose \(H = c \log_2 M \) for some constant \(c > 0 \) and let \(K = 100H^p \).

Fix \(u = (u_1, \ldots, u_M) \) which fixes \(z \). Call \(j \) heavy if \(|z_j| > ||f||_p/H \) and let \(L \subseteq [M] \) be the set of light (non-heavy elements in \([M]\)).

Now for \(p > 2 \), \(k = cM^{1-2/p} \log_2 M \) is \(M^{\Omega(1)} \) and so is larger than the \(50K^2 \) for sufficiently large \(M \), so the probability that any two of the heavy elements collide under \(h \) is at most \(1/100 \).

In order to show that \(||y||_\infty \) approximates \(||z||_\infty \) well, all we need to show is that the contribution of the light elements won’t affect the contribution of any heavy \(j \) element of \(z_j \) by too much.

Let \(a \in [k] \). Then \(\mathbb{E}_g(\sum_{j \in L, h(j) = a} g(j)z_j) = \sum_{j \in L, h(j) = a} \mathbb{E}_g(g(j))z_j = 0 \) for each fixed \(h \).
Therefore
\[
\text{Var}_g, h(\sum_{j \in L, h(j) = a} g(j) z_j) = \mathbb{E}_g, h((\sum_{j \in L, h(j) = a} g(j) z_j)^2)
\]
\[
= \mathbb{E}_g, h(\sum_{i \in L, h(j) = a} \sum_{j \in L, h(j) = a} g(i) g(j) z_i z_j)
\]
\[
= \mathbb{E}_h(\sum_{j \in L, h(j) = a} z_j^2) \quad \text{by pairwise independence}
\]
\[
\leq \mathbb{E}_h(\sum_{h(j) = a} z_j^2)
\]
\[
= \frac{\sum_j z_j^2}{k}
\]
\[
= \|\|z\||_2^2 / k.
\]

Now in order to understand the variance of the contribution of the light elements overall, we let \(u\) vary.

\[
\mathbb{E}_u(\|z\|_2^2) = \sum_j \mathbb{E}(\frac{f_j^2}{u_j^{2/p}})
\]
\[
= \sum_j f_j^2 \mathbb{E}(\frac{1}{u_j^{2/p}})
\]
\[
\leq c' \|f\|_2^2
\]

for some constant \(c' = \int_0^\infty e^{-\lambda} / \lambda^{2/p} d\lambda\) since \(u_j \sim \text{Exp}(1)\).

Now \(\|z\|_\infty\) is roughly \(\|f\|_p\) so we need the variance to be small relative to \(\|f\|_p^2\) rather than \(\|f\|_2^2\). Therefore \(k\) needs to be small enough to reduce \(\|f\|_p^2\) sufficiently to achieve this. To relate these two we use Hölder’s Inequality.

Proposition 0.1 (Hölder’s Inequality). For arbitrary vectors \(u\) and \(v\), \(\langle u, v \rangle \leq \|u\|_p \cdot \|v\|_q\) for \(\frac{1}{p} + \frac{1}{q} = 1\).

We apply Hölder’s inequality to the vectors \((f_1^2, \ldots, f_M^2)\) and \((1, \ldots, 1)\) and \(p' = p/2, q' = 1/(1-\)
\[\frac{1}{p'} = 1/(1 - 2/p) \text{: Then} \]

\[
\|f\|_2^2 = \sum_j f_j^2 \cdot 1 \]
\[
= \left(\sum_j \left(\frac{f_j^2}{p/2} \right)^{2/p} \right)^{2/p} \left(\sum_j \frac{1}{1 - 2/(p)} \right)^{1 - 2/p} \]
\[
= \left(\sum_j f_j^{p/2} \right)^{2/p} M^{1-2/p} \]
\[
= \|f\|_p^2 \cdot M^{1-2/p}. \]

Therefore the variance of the contribution of the light elements is \[\leq \varepsilon' \frac{\|f\|_p^2 M^{1-2/p}}{k}. \] With our choice of \(k \), we get variance for each single bucket \(a \in [k] \) at most \[\varepsilon \frac{\|f\|_p^2 \log M}{\log_2 M}. \]

Now, because the expectation for a bucket is 0, and it is given by a sum of independent random variables with total variance is at most \[\frac{\varepsilon \|f\|_p^2}{\log_2 M}, \] we can apply a variant of Chernoff bounds which says that the probability that such a random variable is at least \(K \) standard deviations above its mean decays exponentially in \(K^2 \) to show that the probability that a single bucket has a contribution at least \(\|f\|_p/10 \) from light elements is at most \(1/(100M) \) for \(\varepsilon \) sufficiently small. By a union bound, except with probability \(1/100 \), every bucket has a contribution at most \(\|f\|_p/10 \) from light elements. Together with the fact that the heavy elements are hashed to distinct bins except with probability \(1/100 \) we get that \(\|y\|_\infty \) is between \(\|f\|_p/3 \) and \(3\|f\|_p \) except with probability \(1/3 \).

Finally, we run \(O(\log(1/\delta)) \) independent copies of the protocol and take the median of the answers to derive a constant factor approximation with probability at least \(1 - \delta \).