The goal of this lecture is to establish risk bounds that depend on the learning algorithm A instead of the hypothesis class H. In particular, we would prove results that look like

With probability at least $1 - \delta$ over the sample set $S \sim D^m$,

$$|\ell(A(S); D) - \ell(A(S); S)| \leq \epsilon$$

i.e. we compare the performance of the same function, $A(S)$, on two different distributions, the uniform distribution on the sample set S and the real distribution D. Contrast this to the approach we took in the Rademacher and VC theory, where we compared the performance of two functions, the output of the algorithm $A(S)$ and the best hypothesis h^*, on the same distribution D.

Notice two simple facts. First, $A(S)$ is a random variable, with the randomness comes from S. Second, $A(S)$ depends on S, so we cannot use Hoeffding’s inequality to compare $\ell(A(S); D)$ and $\ell(A(S); S)$.

1 Uniform stability

Before getting to the formal definitions, we introduce some notations

- $S^i = S \setminus \{x_i, y_i\}$, i.e. the set of $m - 1$ samples where the ith sample is removed.
- $S^i = S^i \cup \{x_i', y_i'\}$ for some worst $(x_i', y_i').$

Definition 1 (Uniform stability). Algorithm A has uniform stability β with respect to a loss function ℓ if for all S and all $i \in [m],$

$$\max_{x,y} |\ell(A(S); (x, y)) - \ell(A(S^i); (x, y))| \leq \beta$$

i.e. the algorithm is "stable" with respect to removing a single sample at all points.

Note that β depends on m and we would want β_m to be around $\frac{1}{m}$.

Remark 1. There are weaker notions of stability such as

- **Error stability:** For all S, for all $i \in [m]: |\ell(A(S); D) - \ell(A(S^i); D)| \leq \beta$, i.e. the average difference is small. This is a very week notion of stability.

- **Hypothesis stability:** For all $i \in [m]$, $E_{S,(x,y)} \left[|\ell(A(S); (x, y)) - \ell(A(S^i); (x, y))| \right] \leq \beta$

Remark 2. By triangle inequality, uniform stability β implies that for S, for all $i \in [m]$

$$\max_{x,y} |\ell(A(S); (x, y)) - \ell(A(S^i); (x, y))| \leq 2\beta$$

Now we show that uniform stability implies a bound in the form stated in the first paragraph.

Theorem 2. Suppose that $\ell \in [0, C]$ and A has uniform stability β. Furthermore, suppose that A is anonymous, i.e. $A(S) = A(S')$ if S and S' contains the same elements (but in different orders). Let Z be the random variable defined by $Z = \ell(A(S); D) - \ell(A(S); S)$. Then w.p. at least $1 - \delta$,

$$Z \leq 2\beta + m(4\beta + C/m)\sqrt{\frac{\log(1/\delta)}{2m}}$$
Proof. We will show that Z is concentrated, and then show that $E[Z]$ is small. For the first part, note that by triangle inequality:

$$|\ell(A(S); D) - \ell(A(S'); D)| \leq |\ell(A(S); D) - \ell(A(S'); D)| + |\ell(A(S); D) - \ell(A(S'); D)| \leq 2\beta$$

Also:

$$|\ell(A(S); S) - \ell(A(S'); S')| \leq \frac{1}{m} \sum_{j \neq i} |\ell(A(S); (x_j, y_j)) - \ell((A)(S'); (x_j, y_j))|$$

$$+ \frac{1}{m} |\ell(A(S); (x_i, y_i)) - \ell(A(S'); (x'_i, y'_i))|$$

$$\leq \frac{m - 1}{m} 2\beta + \frac{C}{m} \leq 2\beta + \frac{C}{m}$$

Hence, $|Z - Z'| \leq 4\beta + \frac{C}{m}$ where Z' denotes the random variable where S is replaced by S'. This implies that $\max_S Z - \min_S Z \leq m(4\beta + C/m)$; therefore $Z \leq E[Z] + m(4\beta + C/m)$.

To bound $E[Z]$, we will need some identities

- $E_S[\ell(A(S); (x_j, y_j))] = E_{S,(x', y')}[\ell(A(S'); (x', y'))]$. This identity holds because for (x', y') drawn from D, $\Pr[S] = \Pr[S']$.

- $E_{S,(x', y')}[\ell(A(S); (x', y'))] = E_{S,(x', y')}[\ell(A(S'); (x', y'))]$. To see that this identity holds, let S' be the set that contains the same elements as S but with (x_i, y_i) and (x_j, y_j) exchange their order. Then since A is anonymous, $A(S) = A(S')$. The identity then follow from the fact that $\Pr[S] = \Pr[S']$ and the previous identity.

With these identities, we have:

$$E[Z] = E_S[\ell(A(S); D) - \ell(A(S); S)]$$

$$= E_{S,(x', y')}[\ell(A(S); (x', y'))] - E_S[\ell(A(S); S)]$$

$$= E_{S,(x', y')}[\ell(A(S); (x', y'))] - \frac{1}{m} \sum_{j=1}^{m} E_S[\ell(A(S); (x_j, y_j))]$$

$$= E_{S,(x', y')}[\ell(A(S); (x', y'))] - \frac{1}{m} \sum_{j=1}^{m} E_S[\ell(A(S); (x_j, y_j))]$$

$$= E_{S,(x', y')}[\ell(A(S); (x', y'))] - \frac{1}{m} \sum_{j=1}^{m} E_{S,(x', y')}[\ell(A(S); (x', y'))]$$

$$E_{S,(x', y')}[\ell(A(S); (x', y'))] - \frac{1}{m} m E_{S,(x', y')}[\ell(A(S); (x', y'))]$$

$$E_{S,(x', y')}[\ell(A(S); (x', y'))] - \ell(A(S'; (x', y')))]$$

$$\leq 2\beta$$

Now, by McDiarmid’s inequality, we have that with probability at least $1 - \delta$,

$$Z \leq E[Z] + m(4\beta + c/m) \sqrt{\frac{\log(1/\delta)}{m}} \leq 2\beta + m(4\beta + c/m) \sqrt{\frac{\log(1/\delta)}{m}}.$$

The implication of this theorem is that if A is uniformly stable and has good empirical risk, we have good bound on A’s risk even if the hypothesis class \mathcal{H} is bad.
2 Regularized ERM

We give an example algorithm that has uniform stability. Consider the case where $y \in \{-1, 1\}$, is convex and differentiable. For simplicity, assume that $\ell(h; (x, y)) = \ell(yh(x))$, so ℓ is λ-lipschitz. (log loss is a nice loss here; hinge loss is not differentiable, but there’s a fix for that.) The algorithm we will use is Regularized ERM, which outputs the hypothesis that minimize the following quantity:

$$R(h) = \ell(h; S) + c\psi(h)$$

where $\psi(h)$ is some convex and differentiable function from H to \mathbb{R} and c is some constant.

Consider the following quantities

- $\bar{h} = \arg\min_h R(h)$
- $R^{\lambda}(h) = \ell(h; S^{\lambda}) + c\psi(h)$
- $\bar{h}^{\lambda} = \arg\min_h R^\lambda(h)$

Note that \bar{h}^{λ} is the output of the algorithm on S^{λ}. Therefore $\beta = \max_{x,y} \| \ell(h; (x, y)) - \ell(\bar{h}^{\lambda}; (x, y)) \|$ is exactly the quantity we want to bound. We have:

$$\beta = \max_{x,y} \| \ell(h; (x, y)) - \ell(\bar{h}^{\lambda}; (x, y)) \| \leq \max_{x,y} \| y\bar{h}(x) - y\bar{h}^{\lambda}(x) \| = \max_{x} \lambda \| \bar{h}(x) - \bar{h}^{\lambda}(x) \|. \tag{1}$$

Now we consider a concrete hypothesis class $H = \{ w \in \mathbb{R}^n \}$ and domain $\mathcal{X} = \{ x \in R^n : \|x\| \leq X \}$. Let $\psi(w) = \| w \|^2$.

To prove a concrete bound on β, we will use the Bregman divergence defined as follows.

Definition 3. The Bregman divergence of a function f is defined by $B_f(v', v) = f(v') - f(v) - \langle v' - v, \nabla f(v) \rangle$.

Lemma 4. If f is convex then $B_f \geq 0$.

Lemma 5. $cB_\psi(\bar{h}^{\lambda}||\bar{h}) + cB_\psi(\bar{h}||\bar{h}^{\lambda}) \leq \frac{2\lambda}{m} \max_x \| \bar{h}^{\lambda}(x) - \bar{h}(x) \|.$

Proof. We have:

$$cB_\psi(\bar{h}^{\lambda}||\bar{h}) + cB_\psi(\bar{h}||\bar{h}^{\lambda}) \leq cB_R(\bar{h}^{\lambda}||\bar{h}) + cB_R(\bar{h}||\bar{h}^{\lambda})$$

$$= R(\bar{h}^{\lambda}) - R(\bar{h}) + R(\bar{h}) - R(\bar{h}^{\lambda})$$

$$= \frac{1}{m} \left(\ell(\bar{h}^{\lambda}; (x_i, y_i)) - \ell(\bar{h}; (x_i, y_i)) \right) + \frac{1}{m(m-1)} \sum_{j \neq i} \left(\ell(\bar{h}; (x_j, y_j)) - \ell(\bar{h}^{\lambda}; (x_j, y_j)) \right)$$

$$\leq \frac{\lambda}{m} \| \bar{h}^{\lambda}(x_i) - \bar{h}(x_i) \| + \frac{\lambda}{m(m-1)} \sum_{j \neq i} \| \bar{h}(x_j) - \bar{h}^{\lambda}(x_j) \|$$

$$\leq \frac{\lambda}{m} \max_x \| \bar{h}^{\lambda}(x) - \bar{h}(x) \| + \frac{\lambda}{m(m-1)} (m-1) \max_x \| \bar{h}(x) - \bar{h}^{\lambda}(x) \|$$

$$\leq \frac{2\lambda}{m} \max_x \| \bar{h}(x) - \bar{h}^{\lambda}(x) \|$$

where the first inequality follows from the facts that $B_{f+g} = B_f + B_g$, that ℓ is convex and Lemma 4. \hfill \square

Now note that for our definition of ψ, $B_\psi(w||w') = \| w - w' \|^2$ is symmetric. Thus, the lemma implies

$$2c\| \bar{w}^{\lambda} - \bar{w} \|^2 \leq \frac{2\lambda}{m} \| \bar{h}^{\lambda}(x_i) - \bar{h}(x_i) \| \leq \frac{2\lambda}{m} X \| \bar{w}^{\lambda} - \bar{w} \|$$
Hence, we have

\[\| \bar{w}^{\text{i}} - \bar{w} \| \leq \frac{\lambda X}{mc} \]

By (1), we have

\[\beta \leq \max_x \lambda \left| \hat{h}(x) - \bar{h}^{\text{i}}(x) \right| \leq \lambda X \| \bar{w} - \bar{w}^{\text{i}} \| \leq \lambda X \cdot \frac{\lambda X}{mc} = \frac{\lambda^2 X^2}{mc} = O \left(\frac{1}{m} \right) \] (2)

This shows that the regularized ERM algorithm has uniform convergence for this setting. Choosing an appropriate \(c \) so as to make sure that the algorithm still has good empirical loss yields a good bound on its risk.