Online to offline, constrained subgradient descent

Lecturer: Ofer Dekel
Scribe: Jinna Lei

1 Review

1.1 Doob martingale

\[\forall i = 0, \ldots, m W_i = \mathbb{E}[F(u_1, \ldots, u_m)|u_1, \ldots, u_i] \]
\[W_0 = \mathbb{E}[f(u_1, \ldots, u_m)] \]
\[W_m = f(u_1, \ldots, u_m) \]
\[|W_i - W_{i-1}| < c/m \]

1.2 Online learning algorithm

In the following, \(U \) is an update function.

Algorithm 1 Online learning

Pick default \(h_0 \in H \)

for \(i = 1, \ldots, m \) do

\[\text{receive } x_i \in X \]
\[\text{predict } h_{t-1}(x_i) \]
\[\text{receive } y_i \in Y \]
\[\text{suffer loss } l(h_{t-1}(x_i, y_i)) \]
\[\text{update } h_i \leftarrow U(h_{t-1}, (x_i, y_i)) \] (or, alternatively, \(h_i \leftarrow U(h_0, \{x_j, y_j\}_{j=0}^i) \)).

end for

Note that there are no explicit limitations on the initial function \(h_0 \), but the update function \(U \) encodes an implicit restriction on the subsequent \(h_i \). In addition, “memorizing answers” is not a valid strategy, since this algorithm incurs loss based on the new sample in the next iteration.

1.3 Guarantee on cumulative loss

Let \(Q \) be a uniform distribution on \(h_0, \ldots, h_m \) and \(\ell \) a loss function with range in \([0, c]\). With probability at least \(1 - \delta \) over \(S \sim \mathcal{D}^m \) for any update strategy \(U \),

\[\ell(Q; \mathcal{D}) \leq \frac{1}{m} \sum_{i=1}^m \ell(h_{i-1}; (x_i, y_i)) + c \sqrt{\frac{\log(1/\delta)}{2m}} \]

We want two things of our learning algorithm: for the cumulative loss \(\sum_{i=1}^m \ell(h_{i-1}; (x_i, y_i)) \) to grow as \(O(\sqrt{m}) \), and the excess risk \(\ell(h; \mathcal{D}) - \ell(h^*; \mathcal{D}) \) to go to 0. Note that the latter condition is not a constraint on \(\ell(h; \mathcal{D}) \) itself; it only bounds the difference between our hypothesis and the best hypothesis in hindsight.
2 Online learning to offline learning: constrained subgradient descent

2.1 Subgradients

Definition 1 (subgradient). Let \(f \) be a convex function with domain \(\mathbb{R}^n \). Let \(w \in \mathbb{R}^n \). The subgradient of \(f \) at \(w \) is a vector \(v \) such that \(\forall w' \in \mathbb{R}^n

\begin{align*}
 f(w') - f(w) &\geq \langle v, w' - w \rangle, \\
 \text{or equivalently, } f(w') &\geq f(w) + \langle v, w' - w \rangle.
\end{align*}

We will denote the subgradient of \(f \) at \(w \) by \(\nabla f(w) \).

If \(f \) is differentiable at \(w \), then the gradient is the only subgradient.

2.1.1 Example: Hinge loss

Notation: \([z]_+ = \max(z, 0)\).

Claim 2.

\[
 \nabla_w [1 - y\langle w, x \rangle]_+ = \begin{cases}
 0 & y\langle w, x \rangle \geq 1 \\
 -yx & y\langle w, x \rangle < 1
\end{cases}
\]

Proof. Trivial if \(y\langle w, x \rangle \geq 1 \), so assume \(y\langle w, x \rangle < 1 \).

\[
 [1 - y\langle w', x \rangle]_+ - [1 - y\langle w, x \rangle]_+ \\
 \geq (1 - y\langle w', x \rangle) - (1 - y\langle w, x \rangle) \\
 = (y - y\langle w', x \rangle) - (x - y\langle w, x \rangle) \\
 \geq \langle -yx, w' - w \rangle
\]

2.1.2 Example: Log loss

\[
 \nabla \log(1 + e^{-y\langle w, x \rangle}) = \frac{1}{1 + e^{-y\langle w, x \rangle}} (-yx)
\]

2.2 Subgradient descent algorithm

This is our general online algorithm, with the update strategy \(U \) explicitly specified as the subgradient and projection steps.

Definition 3 (Online regret). The online regret of an online algorithm \(\mathcal{A} \) is

\[
 \sum_{i=1}^m \ell(h_{i-1}; (x_i, y_i)) - \min_{h \in H} \sum_{i=1}^m \ell(h; (x_i, y_i)),
\]

or, intuitively, the cumulative loss of \(\mathcal{A} \) compared to the cumulative loss of the best fixed hypothesis in hindsight.
Algorithm 2 Subgradient descent (GD)

Init \(w_1 = 0 \)
for \(i = 1, \ldots, m \) do
receive \(x \in \mathbb{R}^n \)
predict \(\langle w_{i-1}, x_i \rangle \)
receive \(y \in \mathbb{R}^n \)
suffer loss \(\ell(y; w, x) \)
\(w'_i \leftarrow w_{i-1} - \eta \nabla \ell(w_{i-1}) \) (subgradient step)
\(w_i \leftarrow \min(1, \frac{B}{||w'_{i-1}||}) w'_i \) (projection step)
end for

Regret is the online equivalent of excess risk.

Theorem 4. The regret of GD \(\leq \eta = \frac{B}{\sqrt{\lambda X}} \), where \(||w|| \leq B \), \(\ell \) is \(\lambda \)-Lipschitz, and \(||x|| \leq X \).

Proof. Let \(H \) be the ball of radius \(B \). Choose \(w^* \in H \) arbitrarily. Define: \(\alpha_i := \beta_i + \gamma_i \), where
\[
\beta_i := \frac{1}{2} ||w_{i-1} - w^*||^2 - \frac{1}{2} ||w'_{i-1} - w^*||^2,
\]
\[
\gamma_i := \frac{1}{2} ||w'_{i-1} - w^*||^2 - \frac{1}{2} ||w_i - w^*||^2.
\]

Lemma 5. \(\gamma_i \geq 0 \)

Proof. (Intuitively, projection onto a convex set brings you closer to any point in the convex set.)
Case 1: \(||w'_{i-1}|| \leq B \Rightarrow w_i = w'_{i-1} \Rightarrow \gamma_i = 0 \).
Case 2: \(||w'_{i-1}|| > B \Rightarrow \gamma_i = \frac{B^2}{||w'_{i-1}||} = \frac{B^2}{||w_{i-1}||} \Rightarrow \)
\[
\gamma_i = \frac{1}{2} ||w'_{i-1}||^2 + \frac{1}{2} ||w^*||^2 - \langle w'_{i-1}, w^* \rangle - \frac{1}{2} ||w_i||^2 - \frac{1}{2} ||w^*||^2 + \langle w_i, w^* \rangle
\]
\[
= \frac{1}{2} ||w'_{i-1}||^2 - \frac{1}{2} B^2 - (1 - \frac{B}{||w'_{i-1}||}) \langle w'_{i-1}, w^* \rangle
\]
\[
\geq \frac{1}{2} ||w'_{i-1}||^2 - \frac{1}{2} B^2 - (1 - \frac{B}{||w'_{i-1}||}) ||w'_{i-1}|| ||w^*||
\]
\[
\geq \frac{1}{2} ||w'_{i-1}||^2 - \frac{1}{2} B^2 - (1 - \frac{B}{||w'_{i-1}||}) ||w'_{i-1}|| B
\]
\[
= \frac{1}{2} ||w'_{i-1}||^2 + \frac{1}{2} B^2 - ||w_{i-1}|| B
\]
\[
= \frac{1}{2} (||w'_{i-1}|| - B)^2
\]
\[
\geq 0
\]

Lemma 6.
\[
\beta_i \geq -\frac{\eta^2 \lambda^2 X^2}{2} + \eta (\ell(w_{i-1}; (x_i, y_i)) - \ell(w^*; (x_i, y_i))).
\]

3
Proof. By the definition of \(w'_{i-1} \),
\[
\frac{1}{2} ||w'_{i-1} - w^\ast|| = \frac{1}{2} ||w_{i-1} - w^\ast - \eta \nabla \ell(w_{i-1})||^2.
\]

Thus,
\[
\beta_i = \frac{1}{2} ||w_{i-1} - w^\ast||^2 - \frac{1}{2} ||w'_{i-1} - w^\ast||^2
\]
\[
= \frac{1}{2} ||w_{i-1} - w^\ast||^2 - \frac{1}{2} ||w_{i-1} - w^\ast||^2 - \frac{\eta^2}{2} ||\nabla \ell(w_{i-1})||^2 + \eta \langle w_{i-1} - w^\ast, \nabla \ell(w_{i-1}) \rangle
\]
\[
\geq - \frac{\eta^2}{2} \lambda^2 X^2 + \eta (\ell(w_{i-1}; (x_i, y_i)) - \ell(w^\ast; (x_i, y_i))),
\]
where the last inequality is by the \(\lambda \)-Lipschitz condition and the definition of subgradient.

Putting it all together:
\[
\sum_{i=1}^{m} \alpha_i = \sum_{i=1}^{m} \beta_i + \gamma_i
\]
\[
\leq \sum_{i=1}^{m} \beta_i
\]
\[
\leq \frac{1}{2} m \eta^2 \lambda^2 X^2 + \eta \sum_{i=1}^{m} \ell(w_{i-1}; (x_i, y_i)) - \ell(w^\ast; (x_i, y_i))).
\]

The first equality is from Lemma 5 and the second from Lemma 6. Now we use \(\eta = \frac{B}{\sqrt{m} \lambda X} \) to get
\[
- \frac{1}{2} m \eta^2 \lambda^2 X^2 + \eta \sum_{i=1}^{m} \ell(w_{i-1}; (x_i, y_i)) - \ell(w^\ast; (x_i, y_i)) \leq \frac{1}{2} B^2
\]
\[
\Rightarrow \text{regret} \leq \frac{B^2}{2 \eta} + \frac{1}{2} m \eta \lambda^2 X^2.
\]

To be continued...