1 Review of PAC Bayes Theorem

Theorem 1. ∀ distributions \(\mathcal{D} \), ∀ hypothesis \(\mathcal{H} \), ∀ priors \(\mathcal{P} \) on \(\mathcal{H} \), ∀\(\delta > 0 \) w.p. \(\geq 1 - \delta \), it holds for all posteriors \(\mathcal{Q} \) on \(\mathcal{H} \) that

\[
KL(l(\mathcal{Q}; S) || l(\mathcal{Q}; \mathcal{D})) \leq KL(\mathcal{Q}||\mathcal{P}) + \log \frac{m+1}{\delta}
\]

Lemma 2. For any scalars, \(\alpha, \beta \) let it hold that \(KL(\alpha || \beta) \leq x \). Then, \(|\alpha - \beta| \leq \sqrt{\frac{x}{2}} \). Also if \(\beta > \alpha \), \(\beta - \alpha \leq \sqrt{2} x \alpha + 2 x \).

2 Derandomizing PAC Bayes bounds

Notation

\(X = [-1, 1]^n \subset \mathbb{R}^n = \{ w \in \mathbb{R}^n : \|w\|_\infty \leq 1 \} \). \(\mathcal{H} \) is a linear hypothesis class, so that any element, \(h_w \) applied to \(x \) has the form, \(h_w(x) = \langle w, x \rangle \) with \(w \in X \). For any feature vector \(x \), \(\text{sgn}(h_w(x)) \) is the binary prediction and \(|h_w(x)| \) is the confidence. Denote by \(l_\gamma \) the \(\gamma \)-margin 0-1 loss. That is, \(l_\gamma(h_w; (x, y)) = 1_{y h_w(x) \leq \gamma} \). Note that \(l_0 \) is the standard error-indicator loss. For a uniform distribution, \(\mathcal{P} \) let \(\text{vol}(\mathcal{P}) \) denote the volume of the sample space having non-zero probability mass.

Theorem 3. Let \(A \) be any algorithm that takes in a sample \(S \sim \mathcal{D}^m \) and outputs a hypothesis \(˜w \) with \(˜w \in [-\frac{\gamma}{2n}, \frac{\gamma}{2n}]^n \). Let \(\mathcal{P} \) be uniformly distributed on \([-\frac{\gamma}{2n}, \frac{\gamma}{2n}]^n \) \(\cap \mathcal{P} \). Then, \(l_0(˜w; \mathcal{D}) \leq l_\gamma(˜w; S) + \sqrt{\frac{n \log(\frac{2n}{\delta}) + \log(\frac{m+1}{\delta})}{2m}} \).

Note that the algorithm \(A \) needn’t know anything about the prior \(\mathcal{P} \) or posterior, \(\mathcal{Q} \). These two quantities are chosen in the theorem to give good de-randomized PAC-Bayes bounds. The proof of the theorem follows from two lemmas given below.

Lemma 4. The following inequalities hold true:

\[
\begin{align*}
 l_0(˜w; \mathcal{D}) &\leq l_\gamma(\mathcal{Q}; \mathcal{D}) \\
 l_\gamma(\mathcal{Q}; S) &\leq l_\gamma(˜w; S)
\end{align*}
\]

Proof. \(\forall ˜w \in \mathcal{Q}, \forall x \in X \) we have,

\[
\begin{align*}
 |⟨ ˜w, x⟩ - ⟨ ˜w, x⟩| &= \left| \sum_{j=1}^{n} x_j (˜w_j - ˜w_j) \right| \\
 &\leq \sum_{j=1}^{n} |x_j (˜w_j - ˜w_j)| \\
 &\leq \sum_{j=1}^{n} | ˜w_j - ˜w_j| \\
 &\leq \sum_{j=1}^{n} \frac{\gamma}{2n} \\
 &= \frac{\gamma}{2}
\end{align*}
\]
Note that $l_1(\hat{w}; (x, y)) = 0 \Rightarrow l_2(\hat{w}; (x, y)) = 0$. Indeed, let $y = 1$ then $\langle \hat{w}, x \rangle \geq \gamma$. Hence from (2), $\langle \hat{w}, x \rangle \geq \langle \hat{w}, x \rangle - \hat{\gamma} \geq \frac{\gamma}{2}$. Similarly, $l_2(\hat{w}; (x, y)) = 0 \Rightarrow l_0(\hat{w}; (x, y)) = 0$. The previous two implications immediately imply that,

$$
\begin{align*}
 l_0(\hat{w}; D) & \leq l_2(\hat{w}; D) \\
 l_0(\hat{w}; S) & \leq l_2(\hat{w}; S)
\end{align*}
$$

Taking expectation of above inequalities over $\hat{w} \sim Q$, the lemma follows. \hfill \Box

Lemma 5. $KL(Q||P) \leq n \log \left(\frac{4n}{\gamma} \right)$.

Proof. Note from definition that $\text{vol}(P) = 2^n$, $\text{vol}(Q) \geq \left(\frac{\gamma}{2n} \right)^n$. Let $q(h), p(h)$ be the p.d.f of Q, P respectively.

$$
KL(Q||P) = \int_{h \in \mathcal{X}} q(h) \log \frac{q(h)}{p(h)} = \log \frac{\text{vol}(P)}{\text{vol}(Q)} \leq n \log \frac{4n}{\gamma}.
$$

\hfill \Box

Proof of Theorem 3. Note that (1) holds for $l = l_2$. Along with Lemma 2, this implies that

$$
l_2(Q; D) \leq l_2(Q; S) + \sqrt{\frac{KL(Q||P) + \log \frac{n+1}{2m}}{2m}}
$$

Using (4) along with Lemma 4 and Lemma 5 we have that,

$$
\begin{align*}
l_0(\hat{w}; D) & \leq l_2(Q; D) \\
& \leq l_2(Q; S) + \sqrt{\frac{KL(Q||P) + \log \frac{n+1}{2m}}{2m}} \\
& \leq l_2(\hat{w}; S) + \sqrt{\frac{n \log \frac{4n}{\gamma} + \log \frac{n+1}{2m}}{2m}}
\end{align*}
$$

\hfill \Box

3 Distribution dependent priors

In this section, we give two examples of distribution dependent priors on the hypothesis space that give good PAC-Bayes bounds.

3.1 Generically prior

Given a sample $S \sim D^n$ and an algorithm $A(S)$, the posterior Q is a function of $A(S)$. The bound on the right hand side of (1) can be minimized by choosing P appropriately. Set,

$$
P^* = \arg\min_{P \in \mathcal{P}} \mathbb{E}_{S \sim D^n} [KL(Q||P)]
$$

The following lemma shows that P^* would be dependent on the distribution D but not on the sample S.

Lemma 6. $P^* = \mathbb{E}_{S \sim D^n} [Q]$.

Proof. Let $q(h)$ and $p(h)$ be the p.d.f of Q and P respectively. Note that minimizing $\mathbb{E}_{S \sim D^n} [KL(Q||P)] = \int_{S \sim D^n} \int_{A} q(h) \log \frac{q(h)}{p(h)} dh dS$ with respect to P is equivalent to minimizing $\int_{S \sim D^n} \int_{A} q(h) \log \frac{1}{p(h)} dh dS$ with respect to P. Note that $\mathbb{E}_{S}[q(h)] = \bar{q}(h) = \int_{S \sim D^n} q(h) dS$. Hence,

$$
\begin{align*}
 \int_{S \sim D^n} \int_{A} q(h) \log \frac{1}{p(h)} dh dS &= \int_{A} \bar{q}(h) \log \frac{1}{p(h)} dh \\
 &= \int_{A} \bar{q}(h) \log \frac{1}{\bar{q}(h)} dh - \int_{A} \bar{q}(h) \log \frac{p(h)}{\bar{q}(h)} dh \\
 &\geq \int_{A} \bar{q}(h) \log \frac{1}{\bar{q}(h)} dh
\end{align*}
$$

2
where the last inequality follows from Jensen’s inequality. Since the equality is achieved for \(p(h) = \bar{q}(h) \) it follows that \(\mathcal{P}^* = \mathbb{E}_{S \sim \mathcal{D}^m}[Q] \).

Hence we have the following bound,

\[
KL(l(Q; S)\| l(Q; \mathcal{D})) \leq \frac{KL(Q\|\mathbb{E}_S[Q]) + \log(m+1)}{m} \tag{8}
\]

3.2 Distribution dependent prior for soft ERM

Consider the posterior coming out of the soft Empirical Risk Minimization:

\[
q(h) = \frac{1}{Z_Q} e^{-\gamma l(h; S)} \tag{9}
\]

where \(\gamma > 0 \) and \(Z_Q \) is a normalization constant so that \(q \) is a p.d.f. Define the distribution dependent prior,

\[
p(h) = \frac{1}{Z_P} e^{-\gamma l(h; \mathcal{D})} \tag{10}
\]

Note that although \(p(h) \) is not the expectation of \(q(h) \) over \(S \sim \mathcal{D}^m \), the exponent \(l(h; \mathcal{D}) = \mathbb{E}_{S \sim \mathcal{D}^m} l(h; S) \).

Lemma 7.

\[
KL(Q\|P) \leq \gamma (l(Q; \mathcal{D}) - l(Q; S)) - \gamma (l(P; \mathcal{D}) - l(P; S)) \tag{11}
\]

Proof.

\[
KL(Q\|P) = \mathbb{E}_Q \log \frac{q(h)}{p(h)} = \mathbb{E}_Q [\log \frac{e^{-\gamma l(h; S)}}{e^{-\gamma l(h; \mathcal{D})}}] - \log \frac{Z_Q}{Z_P} \tag{12}
\]

Note by definition that,

\[
\log \frac{Z_Q}{Z_P} = \log \int_{\mathcal{H}} \frac{1}{Z_P} e^{-\gamma l(h; S)} dh = \log \int_{\mathcal{H}} p(h) e^{\gamma (l(h; \mathcal{D}) - l(h; S))} dh = \log \mathbb{E}_P [e^{\gamma (l(h; \mathcal{D}) - l(h; S))}] \geq \mathbb{E}_P [\gamma (l(h; \mathcal{D}) - l(h; S))] = \gamma (l(P; \mathcal{D}) - l(P; S)) \tag{13}
\]

where the above inequality follows from Jensen’s inequality. Combining (12) and (13), the lemma follows.

Theorem 8. For the posterior \(Q \) with p.d.f as defined in (9), it holds that,

\[
KL(l(Q; S)\| l(Q; \mathcal{D})) \leq \sqrt{2} \gamma \sqrt{\log \left(\frac{m+1}{\delta} \right)} + \frac{\gamma^2}{2m^2} + \frac{\log(m+1)}{m} \tag{14}
\]

3
Proof. The PAC-Bayes bounds in (1) along with Lemma 2 gives,

\[l(Q; D) - l(Q; S) \leq \sqrt{\frac{KL(Q||P) + \log \frac{m+1}{2}}{2m}} \]

(15)

\[|l(P; D) - l(P; S)| \leq \sqrt{\frac{KL(P||P) + \log \frac{m+1}{2}}{2m}} \]

(16)

Combining Lemma 7 and (16) we have,

\[KL(Q||P) \leq \gamma (l(Q; D) - l(Q; S)) - \gamma (l(P; D) - l(P; S)) \]

\[\leq \gamma \sqrt{\frac{KL(Q||P) + \log \frac{m+1}{2}}{2m}} + \gamma \sqrt{\frac{\log \frac{m+1}{2}}{2m}} \]

(17)

Let \(x = KL(Q||P) \) and \(L = \log \frac{m+1}{2} \). Then, \(x - \gamma \sqrt{\frac{L}{2m}} \leq \gamma \sqrt{\frac{x+L}{2m}} \). Assume \(x \geq \gamma \sqrt{\frac{L}{2m}} \). Squaring the previous inequality on both sides, we get that \(x \leq 2\gamma \sqrt{\frac{L}{2m}} + \frac{\gamma^2}{2m} \). Plugging this back into (1) the theorem follows. \(\square \)