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Abstract
We consider the Correlation Clustering problem introduced
in [2]. Given a graph G = (V, E) where each edge is labeled
either “+” (similar) or “−” (different), we want to cluster
the nodes so that the + edges lie within the clusters and
the − edges lie between clusters. Specifically, we want
to maximize agreements — the number of + edges within
clusters and − edges between clusters. This problem is
NP-Hard [2]. We give a 0.7666-approximation algorithm
for maximizing agreements on any graph even when the
edges have non-negative weights (along with labels) and
we want to maximize the weight of agreements. These
were posed as open problems in [2]. Previously the only
results known were a trivial 0.5-approximation for arbitrary
edge weighted graphs, and a PTAS with unit edge weights
when |E| = Ω(|V |2). Somewhat surprisingly, our algorithm
always produces a clustering with at most 6 clusters. As a
corollary we get a 0.7666-approximation algorithm for the
k-clustering variant of the problem where we may create at
most k clusters. A major component of this algorithm is a
simple, easy-to-analyze algorithm that by itself achieves an
approximation ratio of 0.75, opening at most 4 clusters.

Applications and Related Work. Bansal, Blum &
Chawla [2] introduced the correlation clustering prob-
lem and motivated it by a document clustering applica-
tion. We have a corpus of documents and each node in
G represents a document in the corpus. An edge (u, v)
with a + label means that the documents corresponding
to nodes u, v are similar and a − label means that they
are different. The goal is to cluster the documents so
that similar documents (+ edges) lie in the same clus-
ter and dissimilar documents (− edges) lie in different
clusters. Correlation clustering can also be viewed as an
agnostic learning problem. Each edge (u, v) is an “ex-
ample” and we want to represent the target function f
using a hypothesis class of vertex clusters. Our result
implies that any function f has a representation using
a hypothesis of at most 6 clusters that is close to the
best possible representation of f by a hypothesis from
the class of all possible vertex clusterings.

There is a trivial 0.5-approximation algorithm for
maximizing agreements; putting all vertices in one big
cluster, or placing every vertex in a separate clus-
ter, agrees with at least half the edge labels. Bansal
et al. give an algorithm to approximate agreements
with an additive error of ε|V |2, obtaining a PTAS when
|E| = Ω(|V |2). An equivalent optimization problem is
to minimize disagreements — the number of − edges
within clusters and + edges between clusters. In [2]
a constant-factor approximation algorithm is given for
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minimizing disagreements on a complete unweighted
graph. Recently, [3], [4] and [5] independently gave an
O(log |V |)-approx. algorithm for minimizing disagree-
ments on weighted graphs. Independent of our work, [3]
gives a 0.7664-approx. algorithm for maximizing agree-
ments and shows that the problem is APX-Hard.

The k-clustering variant is a special case of the
MAX-2-LIN-MOD-k problem [1]. Here we have a set
of weighted linear equations and inequations of the
form yi − yj ≡ z (mod k), yi − yj �≡ z (mod k).
We want to set yi ∈ {0, . . . , k − 1} to maximize the
total weight of the satisfied (in)equations. We get a
0.7666-approximation for the special case when we only
have equations yi − yj ≡ 0 (mod k) and inequations
yi − yj �≡ 0 (mod k). In contrast, for the general
case only a

(
1
k + ε(k)

)
-approximation is known due to

Andersson, Engebretsen and H̊astad [1].

Our Techniques. We consider a semidefinite pro-
gramming relaxation of the problem and round its
optimal solution. We consider two rounding proce-
dures. The first one extends the Goemans-Williamson
random-hyperplane rounding procedure for MAX
CUT [7]. We choose 2 hyperplanes producing a
solution with at most 4 clusters where the weight
of agreements is, in expectation, at least 0.75 times
the optimal solution value. The second procedure is
based on the rounding scheme of [6]. We show that by
randomly choosing one of these we obtain a clustering
in which the total weight of agreements is at least
0.7666 times the optimal solution value. Thus choosing
the better of the two rounding procedures gives a
0.7666-approximation algorithm.

1 Problem Description

We consider a somewhat more general version of
correlation clustering to maximize agreements. Each
edge e has two weights win(e), wout(e) ≥ 0. An edge
e contributes win(e) to the total agreement weight
if it lies within a cluster and wout(e) otherwise.
The problem is to find a clustering that maximizes∑

e within cluster win(e) +
∑

e not in cluster wout(e). The
weights win(e), wout(e) can be viewed as confidence
estimates of whether e should be labeled + or −
respectively, thus giving a soft labeling. The correlation
clustering problem considered in [2] is a special case
obtained by setting win(e) = 1 if e is labeled + and 0
otherwise, wout(e) = 1 − win(e).



1.1 A Semidefinite Program. Let ei ∈ R
n

be the vector with 1 in the ith coordinate and 0s
everywhere else. We can formulate the problem
as the following mathematical program: maximize{∑

e=(u,v)

(
win(e)(xu ·xv) + wout(e)(1 − xu ·xv)

)
: xv ∈

{e1, . . . , en} for every v ∈ V
}
. Vector ei represents a

possible cluster i. For any clustering, if we set xv = ei

for every vertex v assigned to cluster i, i = 1, . . . , k,
the objective function value becomes the weight of
agreements in the clustering. We relax the constraints
xv ∈ {e1, . . . , en} to get a semidefinite program.

max
∑

e=(u,v)

(
win(e)(xu ·xv)+wout(e)(1 − xu ·xv)

)
(SP)

s.t. xv · xv = 1 for all v

xu · xv ≥ 0 for all u, v, u �= v (1.1)

Our formulation resembles the MAX k-CUT relaxation
in [6] but they relax a mathematical program involving
k vectors {ai} s.t. ai · ai = 1, ai · aj = −1

k−1 for i �= j.

2 The Algorithm
We solve (SP) and round the optimal solution. We con-
sider two rounding procedures. Due to space limitations
we only describe one of these which by itself gives an ap-
proximation ratio of 0.75, and sketch the improvements.

We extend the Goemans-Williamson rounding for
MAX CUT by choosing multiple hyperplanes. Let
{xv ∈ R

n} be the optimal solution to (SP). While
rounding we need to ensure that both, the probabil-
ity that edge e lies inside a cluster, and the proba-
bility that e lies between clusters, are comparable to
the coefficients of win(e) and wout(e) respectively in the
objective function. Choosing too many random hyper-
planes rapidly decreases the probability of the former,
and with too few hyperplanes, e.g., 1, the probabil-
ity of the latter decreases to 0.5 times the coefficient
of wout(e). We choose 2 hyperplanes passing through
the origin independently at random with normals dis-
tributed uniformly in the unit sphere. Let q1, q2 be the
normals to the hyperplanes. These partition the ver-
tices into 4 sets, some possibly empty, based on xv · qi.
Let Rs1,s2 = {v : (−1)sixv · qi ≥ 0, i = 1, 2} where
si ∈ {0, 1}. Each such non-empty set defines a cluster.

Analysis. Let pin(θ), pout(θ) = 1 − pin(θ) denote the
probabilities that nodes u and v with xu · xv = cos θ lie
in the same cluster or different clusters respectively.

Lemma 2.1. pin(θ) = (1 − θ/π)2.

Lemma 2.2. For any θ ∈ [
0, π

2 ], pin(θ) ≥ 0.75 cos θ and
pout(θ) ≥ 0.75(1 − cos θ).

Proof. Let f(θ) = pin(θ)
cos θ and g(θ) = pout(θ)

(1−cos θ) . f(θ) is
minimized at the unique point ϑ ∈ [

0, π
2

]
s.t. tan θ =

2
π−θ . So ϑ < 0.68288 and f(θ) ≥ (1−ϑ/π)2

cos ϑ = 2(π−ϑ)
π2 sin ϑ >

0.7895 for θ ∈ [
0, π

2

]
. dg

dθ = g(θ)
(

1
θ − 1

2π−θ −cot(θ/2)
) ≤

0 for θ ∈ [
0, π

2

]
since cos θ ≥ 1 − θ2

2 , sin θ ≤ θ for
θ ∈ [

0, π
2

]
. So, g(θ) ≥ g(π

2 ) = 0.75 for θ ∈ [
0, π

2

]
.

Theorem 2.1. The above rounding procedure delivers
a solution of expected value at least 0.75 · OPT.

Proof. Let C be the clustering obtained by rounding.
Let Xe be the contribution of edge e = (u, v) to C
and θ = arccos(xu · xv). E

[
Xe

]
= win(e)pin(θ) +

wout(e)pout(θ) ≥ 0.75
(
win(e)(xu·xv)+wout(e)(1−xu·xv)

)
by Lemma 2.2, so E

[C]
=

∑
e E

[
Xe

] ≥ 0.75 · OPT .

2.1 Improvements. For the other rounding proce-
dure we adapt a rounding scheme in [6]. We choose
6 random vectors r1, . . . , r6 ∈ R

n whose coordinates
have the standard normal distribution. Each ri defines
a (possibly empty) cluster Ci = {v : v · ri = maxj v · rj}
in our clustering. The analysis of this algorithm is
however significantly more involved. Randomly choos-
ing this scheme or the 2-hyperplane rounding algorithm
gives a 0.7666-approximation algorithm that produces
at most 6 clusters. So this also works for the k-clustering
variant when k ≥ 6. For k ≤ 5 we use a relaxation
where (1.1) is replaced by xu · xv ≥ −1

k−1 and the ob-

jective function is max
∑

e=(u,v)

(
win(e)

1+(k−1)(xu·xv)
k +

wout(e)
(k−1)(1−xu·xv)

k

)
, and round this by choosing ei-

ther 1 or 2 hyperplanes. This achieves a ratio of 0.77.

Theorem 2.2. There is a 0.7666-approximation algo-
rithm for maximizing agreements. This also gives a
0.7666-approx. algorithm for the k-clustering variant.

Acknowledgments. I thank David Shmoys for giving
helpful suggestions. I also thank Dotan Emanuel, Amos
Fiat and Moses Charikar for sharing their results.
References
[1] G. Andersson, l. Engebretsen, and J. H̊astad. A new

approach to use semidefinite programming with applications
to linear equations mod p. J. Algorithms, 39:162–204, 2001.

[2] N. Bansal, A. Blum, and S. Chawla. Correlation clustering.
Proc. 43rd IEEE FOCS, 238–247, 2002.

[3] M. Charikar, V. Guruswami and A. Wirth. Clustering with
qualitative information. To appear in Proc. 44th IEEE
FOCS, 2003.

[4] E. Demaine and N. Immorlica. Correlation clustering with
partial information. Proc. 6th APPROX, 1–13, 2003.

[5] D. Emanuel and A. Fiat. Correlation clustering — minimiz-
ing disagreements on arbitrary weighted graphs. Proc. 11th
ESA, 208–220, 2003.

[6] A. Frieze and M. Jerrum. Improved approximation algo-
rithms for MAX k-CUT and MAX-BISECTION. Algorith-
mica, 18:67–81, 1997.

[7] M. Goemans and D. Williamson. Improved approximation
algorithms for maximum cut and satisfiability problems us-

ing semidefinite programming. JACM, 42:1115-1145, 1995.


