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ABSTRACT
Weproposeanovel approachto performingefficientsimilarity search
andclassificationin high dimensionaldata.In this framework, the
databaseelementsarevectorsin a Euclideanspace.Givena query
vectorin thesamespace,thegoalis to find elementsof thedatabase
thataresimilar to thequery. In ourapproach,asmallnumberof in-
dependent“voters”rankthedatabaseelementsbasedon similarity
to thequery. Theserankingsarethencombinedby ahighly efficient
aggregationalgorithm. Our methodologyleadsboth to techniques
for computingapproximatenearestneighborsandto aconceptually
rich alternative to nearestneighbors.

Oneinstantiationof our methodologyis asfollows. Eachvoter
projectsall thevectors(databaseelementsandthequery)on a ran-
domline (differentfor eachvoter),andranksthedatabaseelements
basedon the proximity of the projectionsto the projectionof the
query. Theaggregationrulepicksthedatabaseelementthathasthe
bestmedianrank.Thiscombinationhasseveralappealingfeatures.
On thetheoreticalside,we prove thatwith high probability, it pro-
ducesaresultthatis a �������
	 -factorapproximationto theEuclidean
nearestneighbor. On thepracticalside,it turnsout to beextremely
efficient, often exploring no more than 5% of the datato obtain
very high-qualityresults.This methodis alsodatabase-friendly, in
that it accessesdataprimarily in a pre-definedorderwithout ran-
dom accesses,and,unlike othermethodsfor approximatenearest
neighbors,requiresalmostno extra storage.Also, we extendour
approachto dealwith the � nearestneighbors.

We conducttwo setsof experimentsto evaluatethe efficacy of
our methods.Our experimentsincludetwo scenarioswherenear-
estneighborsaretypically employed—similaritysearchandclassi-
ficationproblems.In bothcases,we studytheperformanceof our
methodswith respectto several evaluationcriteria, andconclude
thatthey areuniformly excellent,bothin termsof qualityof results
andin termsof efficiency.

1. INTRODUCTION
The nearest neighbor problem is ubiquitousin many applied

areasof computerscience. Informally, the problemis: given a
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database� of 
 points in somemetric space,and a query � in
the samespace,find the point (or the � points)in � closestto � .
Someprominentapplicationsof nearestneighborsincludesimilar-
ity searchin informationretrieval, patternclassification,dataanal-
ysis,etc. Thepopularityof thenearestneighborproblemis dueto
thefactthatit is oftenquiteeasyandnaturalto mapthefeaturesof
real-life objectsinto vectorsin a metricspace;questionslike sim-
ilarity andclassificationthenbecomenearestneighborproblems.
Sincethemappingof objectsinto featurevectorsis oftenaheuristic
step,in many applicationsit sufficesto find a point in thedatabase
that is approximatelythenearestneighbor. Theseproblemsleadto
fascinatingcomputationalquestions;thereis anextensive literature
on efficiently computingnearestandapproximatelynearestneigh-
bors.For somerecenttheoreticalwork, see[18, 16,19]; for recent
theoretical/appliedwork, see[13, 1, 12,5, 4, 20].

In this paper, we proposea novel methodfor similarity search,
classificationproblems,and other nearest-neighbor-search-based
applications. Our methodis built on two basicparadigms,rank
aggregation [8] andinstanceoptimalalgorithms[11]. Ourmethod
satisfiesthefollowing two demanding,evenconflicting,criteria: it
is a robustgeneralizationof nearestneighbors,andit admitsalgo-
rithmsthatareextremelyefficientanddatabase-friendly.

Thestartingpointfor ourwork is thefollowingsimpleidea.Sup-
posewe areconductingnearestneighborsearcheswith a database� of 
 pointsin the � -dimensionalspace��� (where� is theun-
derlying set—reals,

����� ��� , etc.), andaregiven a query ����� � .
We may considereachcoordinateof the � -dimensionalspaceas
a “voter,” andthe 
 databasepointsas“candidates”in anelection
process.Voter � , for ��������� , ranksall the
 candidatesbasedon
how closethey areto thequeryin the � -th coordinate.Thisgivesus� ranked lists of thecandidates,andour goal is to synthesizefrom
theseasingleorderingof thecandidates;wearetypically interested
in thetop few candidatesin thisaggregateordering.

The rank aggregation problemis preciselythe problemof how
to aggregatethe � rankedlists producedby the � coordinates.The
history of this problemgoesback at least two centuries,but its
mathematicalunderstandingtook placein thelastsixty years,and
theunderlyingcomputationalproblemsarestill within thepurview
of active research[3, 14, 8]. The most importantmathematical
questionson rank aggregationareconcernedwith identifying ro-
bustmechanismsfor aggregation;particularlynoteworthy achieve-
mentsin this field are the works of Young [21] and Young and
Levenglick[22], whoshowedthataproposalof Kemeny [17] leads
to anaggregationmechanismthatpossessesmany desirableprop-
erties.For example,it satisfiestheCondorcetcriterion, whichsays
thatif thereis a candidate� suchthatfor everyothercandidate � , a



majority of thevotersprefers� to  � , then� shouldbethewinnerof
the election.! Aggregationmechanismsthat satisfy the Condorcet
criterion and its naturalextensionsareconsideredto yield robust
resultsthatcannotbe“spammed”by a few badvoters[8].

Kemeny’s proposalis the following: given 
 candidatesand �
permutations"$# � "&% �(')'('(� " � of thesecandidates,producethe per-
mutation* thatminimizes �+-, #/. �0" + � *1	 , where. �0" � *1	 denotes
theKendall tau distance,that is, thenumberof pairs �0� �  �/	 of can-
didatesonwhich therankings" and* disagree(oneof themranks� aheadof  � , while theotherranks  � aheadof � ). Wewill call thisa
Kendall-optimalaggregation. Unfortunately, computingaKendall-
optimalaggregationof even4 lists is NP-complete[8], soonehas
to resortto approximationalgorithmsandheuristics.

Let us now explicatetheconnectionbetweennearestneighbors
andrankaggregation. As a simplebut powerful motivatingexam-
ple, notethat if theunderlyingspaceis

�2��� ��� � endowed with the
Hammingmetric, theneachvoter really producesa partial order;
given a query � , the 3 -th voter partitionsthe database� into two
sets�54+76 �28 �9�;: 8 + 6 � + � and �=<+>6 �28 �5�;: 8 +�?6 � + � ,
ranking all of � 4+ aheadof � <+ . (The notions of Kendall tau
distanceandKendall-optimalaggregationstill remainmeaningful,
sincethey arebasedon comparingtwo candidatesat a time.) It is
nothardto seethatin thiscase,theKendall-optimalaggregationof
thepartialordersproducedby thevoterspreciselysortsthepoints
in the databasein orderof their (Hamming)distanceto the query
vector � . Consideringalsothe fact that thenearestneighborprob-
lems in several interestingmetricscan be reducedto the caseof
theHammingmetric[19, 16,6], we notethattherankaggregation
viewpoint is, in general,at leastaspowerful asnearestneighbors.
(We will provideevenmorecompellingevidenceshortly.)

On theotherhand,we have takena problem(thenearestneigh-
bor problem)that canbesolvedby a straightforwardalgorithmin@ �0
���	 time andrecastit asanNP-completeproblem.Evensome
of the good approximationalgorithmsand heuristicsfor the ag-
gregation problem(e.g., see[8]) take time at least AB�0
��C��
 % 	 .
However, the confluenceof two key factorsrescuesus from this
dilemma. Firstly, we are interestedonly in the top few elements
in the aggregateordering,andnot in the completeorderingof all
databasepoints. Secondly, in thecontext of finding top � winners
in the aggregation,a heuristicbasedon medianranksturnsout to
admitanextremelyefficient implementation.We turn to thisnext.

1.1 Median rank aggregation
WhilecomputingKendall-optimalaggregationsisunlikely toad-

mit efficient algorithms,a polynomial-timecomputableordering
that is optimal in the footrule sense(details in Section2) yields
a factor-2 approximationto a Kendall-optimalordering. More-
over, footrule-optimalaggregationhasthefollowing niceheuristic,
which we will call medianrankaggregation: sortall thepointsin
thedatabasebasedonthemedianof theranksthey receivefrom the� voters. This is a reasonableheuristic,sinceif the medianranks
are all distinct, then this procedureactually producesa footrule-
optimalaggregation[8]. Thus,wehavereducedourproblem(heuris-
tically) to that of finding the databasepoint with the bestmedian
rank(or thepointswith thetop few medianranks).

Insteadof viewing medianrank aggregation only as a heuris-
tic approximationto a Kendall-optimalaggregation, we consider
it to be a naturalrank aggregationapproachin its own right. As
we shall show in Section2.1.1,medianrank aggregationgivesan
optimalsolutionfor anotionof distancesimilar to thefootruledis-
tance.Moreover, medianrankaggregationhastwo desirablequali-
ties,which we will now elaborateon.

Databasefriendliness and instance optimal algorithms. A
strongargumentfor usingmedianrankaggregationis its database
friendliness. Specifically, wewouldliketo proposeasolutionto the
(approximate)nearestneighborproblemthat haspropertiesdesir-
ablein adatabasesystem.Ideally, onewould like to avoid methods
that involve complex datastructures,large storagerequirements,
or that make a large numberof randomaccesses.For example,
theseconsiderationsimmediatelyrule out the theoreticallyprov-
ably good methods[19, 16, 18]; even methodsfrom the recent
databaseliterature[13, 1, 5] areencumberedwith oneor moreof
theseproblems. By contrast,medianrank aggregationusessort-
ing astheonly pre-processingstep1, needsvirtually no additional
storage,andperformsvirtually no randomaccesses.By avoiding
randomaccesses,our methoddoesnotneedindicesthatcanlocate
thevalueof a coordinateof anelement.

We now discussanespeciallyefficient approachto medianrank
aggregation.Let uspre-sortthe 
 databasepointsalongeachof the� coordinates.Givena query � 6 �0� # �('D'('(� � � 	 , we caneasilylo-
catethevalue� + , for �E��3B��� in the 3 -th sortedlist, andplacetwo
“cursors” in this location. Oncethe FG� cursorshave beenplaced,
two for each3 , by moving onecursor“up” andonecursor“down,’
wecannow produceastreamthatproducestherankedlist of the 3 -
th voter, oneelementat a time,andon demand2. That is, we think
of the � votersas operatingin the following online fashion: the
first time the 3 -th voteris called,it will returnthedatabaseelement
closestto � in coordinate3 , thesecondtime it will returnthesec-
ond closestelementin coordinate3 , andso on. Thus,effectively,
we have anonlineversionof theaggregationproblemto solve.

The fact that we caneasilyproduceonline accessto the � vot-
ers (with calls of the form “return the next most highly ranked
element”), togetherwith the fact that we would like to produce
thecandidatewith thebestmedianrank,suggeststhat it might be
possibleto identify this winner without even having to readthe
ranked lists in their entirety! Indeed,computingaggregationsof
scorelistsusingan“optimal” numberof sequentialandrandomac-
cessesto thelists—andhopefullywithouthaving to consultthelists
completely—hasattractedmuchwork in recentdatabaseliterature
(e.g.,[9, 11,15,2]—seealsothereferencesin [10]). Wewill design
analgorithmin thespirit of theNRA, or “no randomaccess,” algo-
rithm from [11]. Themethodof [11], appliedto theonlinemedian-
rank-winnerproblem,yields an exceedinglycrisp algorithm that
canbe summarizedin onesentence.Accessthe ranked lists from
the � voters, oneelementof every list at a time, until somecandi-
dateis seenin more thanhalf thelists—thisis thewinner. We will
call this algorithmthe MEDRANK algorithm. We shall show that
MEDRANK is not just a goodalgorithm,but up to a constantmul-
tiple, it is thebestpossiblealgorithmon every instance,amongthe
classof algorithmsthataccesstheranked lists in sequentialorder.
In fact,even if we allow bothsequentialandarbitraryrandomac-
cesses,thealgorithmtakestime that is within a constantfactorof
thebestpossibleon every instance.This notion is called instance
optimality in [11]. We generalizethealgorithmMEDRANK to find
thetop � objectsin thenaturalway. For example,after thewinner
is found, we continuethe algorithmby accessingthe ranked lists
until a secondelementis seenin morethanhalf the lists—this is
thenumber2 element.We show that this generalizedalgorithmis
alsoinstanceoptimal.

1It is traditionalnot to chargenearest-neighboralgorithmsfor pre-
processingsteps,wheredatastructuresaresetup. This is because
in typicalapplications,thequery-timeefficiency is muchmoreim-
portantthanthecostof preparingthedatastructures.
2A somewhat similar useof cursorsappearsin [6], in the context
of approximatenearestneighborsfor theHammingmetric.



Approximatenearestneighbors. Medianrankaggregationcan
be combinedH with anotherpowerful ideathat hasoften beencon-
sideredin thenearestneighborliterature,sincethepioneeringwork
of Kleinberg [18]. The idea is that of projectionsalong random
lines in the � -dimensionalspace. Specifically, we show in Sec-
tion 2, usinga simplegeometriclemmafirst notedin [18], that if
we project the 
 databasepoints(aswell asthe querypoint) intoI dimensions,whereI 6 @ �0�/< %&JLK�M 
N	 , andthenrun algorithm
MEDRANK on the projecteddata,then with high probability, the
winneraccordingto the MEDRANK algorithmis an � -approximate
nearestneighborof the query point under the Euclideanmetric.
(We saythat � is an � -approximatenearestneighborof � if, for ev-
ery  ���O� , wehave ���0� � �$	1�P���1�Q�R	0���G � � �$	 , where���2S � ST	 denotes
theEuclideanmetric.)

1.2 Rank aggregationvs.nearestneighbors
We feel that rankaggregationis a new androbustparadigmfor

similarity searchandclassification.As we notedearlier, it is prov-
ably aspowerful asnearestneighbors,and it hasa very efficient
implementation(with essentiallyno sequentialaccesses).We now
pointoutanotheradvantageof rankaggregationovernearestneigh-
bors,in thecontext of databases.Considerasimilarity searchprob-
lem where the objectsdo not naturally fit in any naturalmetric
space,suchasa catalogof appliances,wherethe “features”may
becategorical(eg., color),or maybenumericalbut wheredifferent
coordinateshaveincompatibleunits(suchasdollarsversusinches).
In thesesituations,it is extremely artificial and questionableto
modeltheobjectsaspointsin a metricspacewhereall coordinates
have thesamesemantics.In thesesituations,therankaggregation
paradigmfits in naturally: when looking for objectssimilar to a
query object, simply sort the databaseaccordingto eachfeature
(eg., by color preference,cost, etc.), and aggregatethe rankings
produced.Catalogsearchesarevery commondatabaseoperations,
andour algorithmMEDRANK, suitablyimplemented,shouldresult
in anefficient andeffective solutionto this problem.

1.3 Organization
Therestof thispaperis organizedasfollows. Section2 presents

thetechnicalresultsconcerningMEDRANK andrelatedalgorithms,
andconcludeswith a formal descriptionof the algorithms. Sec-
tion 3 describesour experimentsandpresentstheir analysis.Our
experimentsincludedtwo of the primary applicationsof nearest
neighbors—similaritysearchandclassification.In bothcases,we
show that the aggregation approachyields excellent results,both
qualitatively andin termsof efficiency. Wemake someconcluding
commentsin Section4.

2. FRAMEW ORK AND ALGORITHMS
In the first part of this section,we describethe framework, in-

cludingnecessarypreliminariesaboutrank aggregationandabout
instanceoptimalalgorithms.Therearetwo main technicalresults
in thispart: (1) areductionfrom the � -approximateEuclideannear-
estneighborproblemto theproblemof finding thecandidatewith
the bestmedianrank in an electionwherethereare 
 candidates
and

@ �0�/< %�JLK
M 
N	 voters;and(2) aproofthatalgorithmMEDRANK,
which makesonly sequentialaccessesto the � ranked lists, makes
atmostaconstantfactormoreaccessesthananyalgorithmthatuses
sequentialand randomaccessesto thelists, for everydatabaseand
query. Thus,MEDRANK is instanceoptimal in thedatabasemodel
for computingthe medianwinner, andalsoyields a provably ap-
proximatenearestneighbor.

2.1 Rank aggregation,nearestneighbors,and
instanceoptimal algorithms

2.1.1 Preliminaries
Let * and " denotepermutationson 
 objects;by *U�03V	 , we will

meanthe rank of object 3 underthe order * (lower valuesof the
rankare“better”). Oftenwe will saythat 3 is ranked“aheadof” or
“better than” or “above” � by * if *1�03G	XW>*1�0��	 . TheKendall tau
distancebetween* and" , denotedby . �0* � "Y	 , is definedto bethe
numberof pairs �03 � ��	 suchthateither*U�03V	NZ�*U�0��	 but "Y�03G	NW�"[�0��	
or *U�03V	\W�*U�0��	 but "[�03V	\Z�"Y�0��	 . The footruledistancebetween*
and" , denotedby ]^�0* � "[	 , is definedto be + : *1�03G	`_C"[�03V	2: .

Let "$# � "�% �('('D'(� "/a denoteI permutationsof 
 objects.A Kendall-
optimalaggregation of " # �)'D'('(� " a is any permutation* suchthat+ . �0* � " + 	 is minimized;similarly, a footrule-optimalaggrega-
tion of " # �('('('D� " a is any permutation* suchthat + ]^�0* � " + 	 is
minimized. It is known [7] that . �0* � "[	��b]^�0* � "[	��cF . �0* � "[	 .
It follows thatif * is a footrule-optimalaggregationof " # �('('('D� " a ,
thenthe total Kendalldistanceof * from "$# �('('('D� "/a (namelythe
quantity + . �0* � " + 	 ) is within a factorof two of thetotalKendall
distanceof theKendall-optimalaggregationfrom " # �('('('D� " a . Fur-
thermore,althoughcomputingaKendall-optimalaggregationisNP-
hard,computingafootrule-optimalaggregationcanbedonein poly-
nomialtimevia minimum-costperfectmatching[8]. Givenpermu-
tations" # �)'('('(� " a , we definefor eachobject3 thequantity

medrank�03G	 6 median�0"$#G�03V	 �('('D'(� "/aE�03V	�	 .
Thus,medrankassignsto eachobjectits medianrank.Thefollow-
ing easyproposition,pointedout in [8], shows that in many cases,
medianrankaggregationgivesa footrule-optimalaggregation.

PROPOSITION 1. Let "$# � "�% �D'('('(� "�a denoteI permutationsof
the sameset of objects,If the medianvaluesmedrank�03V	 are all
distinct, thenmedrank is a permutationthat is a footrule-optimal
aggregationof " # �('('(')� " a .

Even whenthe medianranksarenot distinct, thenext proposi-
tion saysthat medianrank aggregationgivesan optimal solution
for a notion of distancesimilar to the footrule distance. Let d
be a function that assignsa scoreto eachobject, and let " be a
permutation,both on the samesetof objects. Define ef�2d � "Y	 6+ :Ldg�03V	h_i"[�03V	2: , wherethesumis takenover all objects3 . Thus,e is similar to thefootruledistance,exceptthat d is a functionthat
assignsscores,ratherthana permutation.

PROPOSITION 2. Let "$# � "�% �D'('('(� "�a denoteI permutationsof
the samesetof objects. Thenmedrank is a function d that mini-
mizes

ajV, # ek�2d � " j 	 .
PROOF. We wish to minimize the quantity

ajV, # ek�2d � " j 	 6ajV, # + :Ldg�03V	�_E" j �03G	2: 6 + aj2, # :Ldg�03V	�_E" j �03V	2: . It is clearthat
thislastquantityisminimizedby taking dg�03V	 tobethatvalue

8 + that
minimizes

ajV, # : 8 + _l" j �03G	2: , for eachobject3 . Thus,wecanmin-
imize for eachobject3 separately, andobtaintheoverallminimum.
Fix 3 , andlet m j 6 " j �03V	 . Thenwe wish to find

8 + thatminimizesajV, # : 8 + _nm j : . But it is well known (and easyto prove) thatajV, # : 8 + _�m j : is minimizedby taking
8 + 6 median�0m # �('('('(� m a 	 .

Hence,
ajV, # ek�2d � " j 	 is minimizedby taking dg�03V	 to betheme-

dianrankof 3 . Thepropositionfollows.

Let � be a databaseof 
 points in R � . For a vector ��� R � ,
a Euclideannearestneighborof � in � is any point

8 �o� such
that for all mp�n� , we have ��� 8h� �q	��r���0m � �$	 , where � denotes
theusualEuclideandistance.For a vector �9� R � and �OZ � , an� -approximateEuclideannearestneighborof � in � is any point



8 �s� suchthatfor all mC�s� , we have ��� 8h� �$	U�7�����5�R	0���0m � �$	 ,
wheret[���2S � ST	 denotestheusualEuclideandistance.Let :u:DS(:L: denote
theEuclideannorm;thus,��� 8h� m`	 6 :L: 8 _Cm`:L: .
2.1.2 Analgorithmfor nearneighbors

The ideaof projectingthe dataalongrandomlychosenlines in
R � was introducedin the context of nearestneighborsearchby
Kleinberg [18]. Specifically, considera point �r� R � , and letv �xw � R � be suchthat ��� wy� �$	zZ{�����n�R	0��� v � �$	 . Supposewe
pick arandomunit vector| in � dimensions;anefficientway to do
this is to pick the � coordinates| # �('('D'(� | � asi.i.d. randomvariables
distributedaccordingto the standardnormaldistribution }o� ��� �
	 ,
andnormalizethevectorto have unit length.We thenproject v �~w ,
and � along | . Let ��S � SL� denotetheusualinnerproduct.Thenintu-
itively, we expecttheprojection � v � |g� of v to besomewhatcloser
to theprojection �-� � |q� of � thantheprojection � wy� |g� of

w
is. That

is, weexpect � v _�� � |q� to besmallerthan � w _�� � |g� . Thefollowing
lemmaimpliesa formal statementof this fact.

LEMMA 3 ([18] ). Assume
8h� m=� R � , andlet �lZ � besuch

that :u: m`:L:gZP���1�O�R	2:u: 8 :L: . If | is a randomunit vectorin R � (chosen
asdescribedabove),then ���R���-m � |q�h�p� 8h� |q�����P�/�RF�_5�
�
� .

By letting
8 6 v _C� andm 6 w _5� , it follows easilythat � v _� � |q� is smallerthan � w _5� � |q� with probabilityat least �/�RF��C�
�
� .

Now let � bea querypoint, let �k�z� betheclosestpoint to � ,
andlet � 6 �V8 ����:y��� 8h� �$	�Z��������
	0���0� � �$	2� . Considera
fixed

8 �^� . If wepick arandomvector| andrankthepointsin �
accordingto theirdistancesfrom theprojectionof � along| , then�
is rankedaheadof

8
with probabilityat least ���
FX�9���R� . Suppose

we pick several randomvectors| # �('('('D� | a andcreateI ranked
lists of thepointsin � asfollows: the � -th ranked list is obtained
by sortingthepointsin � accordingto their projectionsalong | j .
Thenthe expectednumberof lists in which � is ranked aheadof8

is at leastI ���/�RF��9���R��	 ; indeed,by standardChernoff bounds,
if I 6�� � < % JuK
M 
 with � suitablychosen,thenwith probability
at least ��_p�/�2
 % , we have that � is ranked aheadof

8
in more

than I ���/�RF��i���R��	 of thelists. Summingup theerrorprobability
over all

8 �P� , we seethat this implies that with probability at
least ��_p�/�2
 , we have that � is ranked aheadof every

8 �7�
in morethan I ���/�RF����
�
��	 of the lists; in particular, the median
rankof � in the I lists is betterthanthemedianrankof

8
in theI lists. Therefore,if we computethe point �7�b� that hasthe

bestmedianrankamongthe I lists, then(with probabilityat least��_��/�V
 ), we have that � cannotbeanelementof � , soit satisfies���0� � �q	N�P�����C�
	0���0� � �$	 . Wesummarizethis argumentbelow.

THEOREM 4. Let � be a collection of 
 points in R � . Let|q# �D'('('(� |&a berandomunit vectors in R � , where I 6b� �/< %�JLK
M 

with � suitably chosen. Let �7� R � be an arbitrary point, and
define, for each 3 with ����3C� I , the ranked list � + of the 

points in � by sorting themin increasingorder of their distance
to the projection of � along | + . For each element

8
of � , let

medrank� 8 	 6 median�0�E#V� 8 	 �('('D'(� ��aE� 8 	�	 . Let � be a member
of � such that medrank�0�g	 is minimized.Thenwith probability at
least ��_o�/�2
 , wehave���0� � �$	1�P�����C�R	0��� 8h� �$	 for all

8 ��� .

In fact, the above argumentshows more. Let � be a query, let����� be the closestpoint to � , andlet ��%s��� be the second
closestpoint to � . Define the set ��% 6 �28 ����:\��� 8h� �$	5Z�����5�
	0���0� % � �q	2� (noticethat � %X� � , where� is thesetdefined
earlier to be

�V8 �P��:h��� 8h� �q	^Z��������R	0���0� � �$	2� . By similar
arguments,it follows thatwith highprobability, themedianrankof��% is betterthanthatof any elementin ��% ; this impliesthattheel-
ement� % with thesecondbestmedianrankmustsatisfy���0� % � �$	N�

�������R	0���0��% � �$	 . Similarly, for any constant� , it can be shown
thattheelements�¡  �)'('('(� �q¢ thatachieve thethird throughthe � -th
bestmedianrankssatisfy, respectively, ���0� j � �$	N�p���y���R	0���0� j � �q	 ,
where� j denotesthe � -th closestelementto thequery� .

For thepurposesof implementation,we cannotsortthe 
 points
of thedatabaseI timesfor eachquery� . Rather, aspartof thepre-
processing,we createI sortedlists of the 
 pointsin � . The 3 -th
sortedlist sortsthepointsbasedon thevaluesof their projections
alongthe 3 -th randomvector | + . The 3 -th sortedlist is of theform�0� + # �~w + # 	 � �0� + % �£w +% 	 �('('('(� �0� +¤ �~w +¤ 	 , where(1)

w +¥ 6 �-� +¥ � | + � for each¦
, (2)

w +# � w +% � '('('£w +¤
, and(3) � + # �('('('D� � +¤ is a permutationof� �)'D'('(� 
 . Given a query �9� R � , we first computethe projection

of � alongeachof the I randomvectors. For each3 , we locate�-| + � �q� in the(secondcoordinateof the) 3 -th sortedlist, thatis, find¦
suchthat

w +¥ �§�-| + � �q��� w +¥ 4 # , andinitialize two cursorsto
w +¥

and
w +¥ 4 # . One of points � +¥ and � +¥ 4 # is now the databasepoint

whoseprojectionis closestto theprojectionof � . (This is theonly
stepof thealgorithmthatwill requirerandomaccess.)By suitably
moving oneof the two cursors“up” or “down,” we canimplicitly
createa list in which the databasepointsaresortedin increasing
orderof the distanceof their projectionsto � . This resultsin the
following form of sequentialaccessto the I lists: thereis aroutine
thattakesa query �^� R � andinitializesthe F I cursors,andthere
is a routinethat returnsthe next elementin the 3 -th list (in order
orderof proximity to theprojectionof � along| + ).

At the costof morestorageandpre-processing,we could also
implement(full) randomaccessto the sortedlists with indices.
Then, given a point

8 �c� , this routine would return the rank
of thepoint

8
in the 3 -th sortedlist. OuralgorithmMEDRANK does

notneedsuchrandomaccess.

2.1.3 Instanceoptimalaggregation
Wehavenow reducedtheproblemof computingan� -approximate

nearestneighborto the scenarioof [11], which we now outline.
Thereare I sortedlists, eachof length 
 (thereis oneentry in
eachlist for eachof the 
 objects).Eachentryof the 3 -th list is of
the form � 8h�£w + 	 , where

w + is the 3 -th “grade” of
8

. The 3 -th list is
sortedin descendingorder3 by the

w + value. In our case,
w + is sim-

ply therankof object
8

in the 3 -th list (tiesarebrokenarbitrarily).
Further, thereis anaggregationfunction[9, 11] thattakesI scores
andproducesan “aggregate” value. The goal is to identify the �
objectswith thehighestaggregatevalues.

Therearetwo modesof accessto data,namelysorted(or sequen-
tial) accessandrandomaccess.Undersortedaccess,theaggrega-
tion algorithmobtainsthe gradeof an object in oneof the sorted
listsby proceedingthroughthelist sequentiallyfrom thetop. Thus,
if object

8
hasthe ¨ -th highestgradein the 3 -th list, then ¨ sorted

accessesto the 3 -th list arerequiredto seethis rank undersorted
access.The secondmodeof accessis randomaccess.Here, the
aggregationalgorithmrequeststhegradeof object

8
in the 3 -th list,

andobtainsit in onerandomaccess.
In this scenario,our algorithm MEDRANK canbe describedas

follows. Thevalue
w + for object

8
is therankof object

8
in the 3 -th

list. ThealgorithmMEDRANK doessortedaccessto eachlist in par-
allel. Thefirst objectthatit encountersin morethanhalf thelists is
rememberedasthetopobject(tiesarebrokenarbitrarily). Thenext
objectthat it encountersin morethanhalf the lists is remembered
asthenumber2 object,andsoon until thetop � objectshave been

3In [11], theorderis descending,whichcorrespondsto thefactthat
biggervaluesare“better”. For us,smallervaluesarebetter, since
thevaluesareranks,andsowe would (logically) sort in ascending
order.



determined,at which time MEDRANK outputsthe top � objects.
Note that thereareno randomaccesses(in our applicationof this
algorithmfor approximatenearestneighborsasoutlinedabove,we
incur randomaccessesduring the initial setupof the cursors,but
not subsequently).In fact, when the aggregation function is the
median,it is easyto seethat this algorithmis essentiallytheNRA
(“No RandomAccess”)algorithmof [11].

We shall show that in this scenario,algorithmMEDRANK is in-
stanceoptimal[11], whichintuitively correspondsto beingoptimal
(up to a constantmultiple) for every database.More formally, in-
stanceoptimality is definedasfollows. Let © be a classof algo-
rithms,let ª beaclassof databases,andlet cost�0« � �5	 bethetotal
numberof accesses(sortedandrandom)incurredby running« on� .4 An algorithm � is instanceoptimalover © and ª if ���5©
andif for every «c�^© andevery �¬�^ª we have

cost�0� � �5	 6 @ � cost�0« � �5	�	 ' (1)

Equation(1) meansthat thereare constants� � �(­QZ �
suchthat

cost�0� � �5	��n�XS cost�0« � �5	Y�=� ­ for every choiceof «®�z© and�§�Oª . Theconstant� is referredto astheoptimalityratio.
In ourcase,ª is theclassof all databasesconsistingof I sorted

lists, wherethe scoreof an object in eachlist is its rank in that
list, and © is theclassof all correctalgorithms(thatfind thetop �
answersfor themedianrank)underourscenario(whereonly sorted
andrandomaccessesareallowed).

THEOREM 5. Let © and ª beasdescribedabove. Thenalgo-
rithm MEDRANK is instanceoptimalover © and ª .

PROOF. Assumethat the algorithm MEDRANK, when run on���Pª , haltsandgives its output just after it hasdone ¨ sorted
accessesto eachlist. Hence,the � -th lowestmedianrankis ¨ .

Let « be an arbitrary memberof © . Let us definea vacancy
in the 3 -th list to be an integer � suchthat the objectat level � in
the 3 -th list wasnotaccessedby algorithm« undereithersortedor
randomaccessin the 3 -th list. Let ¯ be the setof lists that have
a vacancy at a level lessthan ¨ . We now show that the sizeof ¯
is at most ° I �RFG± . Assumenot. Define � ­ to beobtainedfrom �
by modifying eachlist in ¯ asfollows. Let

8
bea new object,not

in the database� . For eachlist in ¯ , the rank of
8

in that list is
taken to be the level of thefirst vacancy in that list, andwhatever
objectwasin this positionin that list in � is movedto thebottom
of that list. Object

8
is placedat thebottomof eachlist not in ¯ .

Intuitively,
8

fills thefirst vacancy in eachlist in ¯ . Sincetherank
of
8

is lessthan ¨ for morethanhalf the lists, its medianrank is
strictly lessthan̈ . Now algorithm« performsexactly thesameon� and� ­ , andsomusthave thesameoutput.Therefore,algorithm« makesa mistake on �O­ , since

8
is not in the top � list that «

outputs,even though
8

hasa medianrank less than the median
rank (̈ ) of somememberof the top � list that « outputs.This is
a contradiction,sinceby assumption« is a correctalgorithm. So
indeed,thesizeof ¯ is at most ° I �
FG± .

Let ² be the numberof accessesby « . From what we just
showed, it follows that at least ³ I �
FV´ lists have no vacancy at a
level lessthan̈ . This implies

²7µk³ I �RFG´&�0¨�_���	1µP� I �RF�	��0¨�_o��	 '
Therefore,I ¨n�¶F/²�� I . But I ¨ is the numberof accesses
performedby MEDRANK. Hence,MEDRANK is instanceoptimal,
with optimality ratioat most2.

4In [11], thecostof sortedandrandomaccessesmaybedifferent.
Takingthecostof all accessesto bethesame,aswedohere,affects
thetotal costby at mosta constantmultiple.

In theproofof Theorem5, wesaw thatthealgorithmMEDRANK

hasoptimality ratio at most2, with an additive constantof I . If
we wish to getrid of theadditive constant,we canusethefactthat²7Z I �
F to getanoptimality ratioof 4, with noadditiveconstant.
It is interestingto notethat the optimality ratiosthat aregiven in
[11] areall linearor quadraticin I . Our algorithmis, asfar aswe
know, thefirst nontrivial examplein thiscontext with anoptimality
ratio independentof I .

TherearesituationswherealgorithmMEDRANK probesthesorted
listsmorethanhalfway. However, it followsfrom resultsin [9] that
when the lists are independentlydrawn at random,the expected
probedepthof MEDRANK is

@ �0
 # < %2·D¸Ta 4 %�¹ 	 . When the sorted
lists arepositively correlated,we expect terminationeven earlier.
In fact,whentheranklistsareproducedby computingproximity of
therandomprojectionsof thedatabasepointsto thecorresponding
projectionsof the query, it canbe shown that the lists aresignifi-
cantlycorrelated.Weomit thedetails.

We remarkthat MEDRANK is similar in an interestingway to
Fagin’s algorithm(FA) [9], in thatFA haltsonly afterseeing� ob-
jectsin all I lists,whereasMEDRANK haltsafterseeing� objects
in morethan I �RF lists. In thecaseof FA, the � objectsseenin allI lists neednot be the top � objects,andsorandomaccessesare
still required.However, for MEDRANK, the � objectsseenin more
than I �
F lists arenecessarilythetop � objects,andsono random
accessesarerequired.

2.2 Summary of algorithms
Wenow presentformaldescriptionsof algorithmMEDRANK and

of two relatedalgorithms,OMEDRANK andL2TA. OMEDRANK is
a heuristicimprovementaimedat (further) improving its running
time, andalgorithm L2TA is an implementationof the “threshold
algorithm” of [11], an instanceoptimal algorithm for computing
Euclideannearestneighborsin the modelwheredatain eachco-
ordinateis accessedvia sequentialandrandomaccesses.We will
denoteby L2NN the straightforward algorithmfor finding nearest
neighborsvia a linearscanof all databaseelements.

Thedescriptionsarein thestandard“pseudo-code”style;where
appropriate,we have decidedin favor of clarity over fine,gory de-
tails andboundaryconditions5. Also, we will describethe proce-
duresto find the winner; the extensionsto finding the top � ele-
mentsarefairly straightforward.

We will assumethat we have a database� of 
 pointsin R a ,
whereI 6 � (theoriginalEuclideanspace)or I 6 @ �0� < % JLK�M 
N	
(the spaceafter projectingall dataalong I randomlines). For���O� and ����3�� I , we will write � + to denotethevalueof � in
the 3 -th coordinate.

Algorithm MEDRANK is oneamonga family of aggregational-
gorithms,wherewe couldstrengthenthenotionof medianby con-
sideringquantilesotherthanthe50-thpercentile.Weintroducethe
parameterMINFREQ in MEDRANK to vary this valueto the other
quantiles.Even thoughthe algorithmswith othervaluesof MIN-
FREQ do not ostensiblyhave any connectionto nearestneighbors,
weexpectthemto beexcellentaggregationalgorithmsaswell. The
MINFREQ parameteris a strict lower boundon thenumberof lists
anelementhasto appearin beforeit is declaredthewinner. Taking
themedianrankcorrespondsto settingMINFREQ = 0.5.Theideais
thatby increasingMINFREQ, we canexpectto improve thequality
at thecostof moreprobesinto thedatabase,therebypermittinga
quality–timetradeoff.

5For example,whenwe decrementor incrementpointers,we do
not make explicit what to do whenthey go out of range;similarly,
whenwe createauxiliary index structuresor sortedtables,we will
notexplicitly sayhow they arestored(B-treeor flat array, etc.).



Algorithmº MEDRANK

Pre-processing

CreateI lists � # �('(')'(� � a , where� + consistsof thepairs �0� � � + 	
for all �E�O� .

For �s�b3�� I , sort � + in ascendingorderof thesecondcom-
ponent. Now each � + hasthe form �0� +¼» # �£w +½» # 	 � S(S)S � �0� +¼» ¤ �£w +¼» ¤ 	 ,
wherethe� +¼» ¥ ’sarethe
 distinctobjectsin thedatabase,and

w +¼» #\�w +¼» %�� '('D' � w +¼» ¤ .
Query-processing

Given �5� R a , for each3 , initialize two pointers ¾ + and ¿ + into� + sothat
w +¼» À)Á ��� + � w +¼» ÂTÁ .Ã

will bea setof “seenelements”�s�9� andtheir frequenciesdÅÄ ; initialize
Ã

to Æ .
while

Ã
hasnoelement� s.t. d Ä Z MINFREQ Ç I do:

for ���o3U� I do:

if : w +¼» À)Á _C� + :$Wp: w +¼» ÂTÁ _C� + : then
set� 6 � +½» ÀÅÁ anddecrement¾ +

else
set� 6 � +½» Â Á andincrement¿ +

if � ?� Ã , then
add� to

Ã
andset d Ä 6 �

else
incrementd Ä

end-for
end-while

Outputtheelement��� Ã with thelargest d Ä .
Thesecondalgorithmwe describe,OMEDRANK, is basedon the

following observationaboutMEDRANK (thenotationsareasin the
descriptionof thealgorithmMEDRANK). Insteadof comparingthe
values

w +½» ÀÅÁ and
w +¼» ÂTÁ andchoosingthe onecloserto � + , we will

considerboth elements� +½» À)Á and � +¼» ÂTÁ . Sincewe do not perform
any randomaccesses(eg., “find therankof � +¼» À)Á in someotherlist� j ”), this will increasethe numberof elementswe considerfor
membershipin

Ã
, but we save onmany comparisons.

Algorithm OMEDRANK

Pre-processing

Identicalto MEDRANK.

Query-processing

Given �5� R a , for each3 , initialize two pointers ¾ + and ¿ + into� + sothat
w +¼» À)Á ��� + � w +¼» ÂTÁ .Ã

will bea setof “seenelements”�s�9� andtheir frequenciesd Ä ; initialize
Ã

to Æ .
while

Ã
hasnoelement� s.t. d Ä Z MINFREQ Ç I do:

for ���o3U� I do:

for ��� � � +½» À Á � � +½» Â Á � do:
if � ?� Ã , then

add� to
Ã

andset d Ä 6 �
else

incrementd Ä
end-for

decrement¾ + andincrement¿ +
end-for

end-while

Outputtheelement��� Ã with thelargest dÅÄ .

Finally, wedescribeaninstanceoptimalalgorithmfor computing
Euclideannearestneighbors;thisalgorithmis anapplicationof the
“thresholdalgorithm,” or TA, of [11] to theproblemof computing
Euclidean(or � % ) nearestneighbors. This algorithm, which we
will call L2TA, canbeusedin placeof thenaive nearestneighbors
algorithm,andis oftenmuchfaster.

Algorithm L2TA

Pre-processing

CreateI lists � # �('D'('(� � a , where� + consistsof thepairs �0� � � + 	
for all ����� .

For ����3U� I , sort � + in ascendingorderof thesecondcompo-
nent.Now each� + hastheform �0� +¼» # �£w +½» # 	 �D'('(')� �0� +½» ¤ �xw +½» ¤ 	 , where
the � +¼» ¥ ’s are the 
 distinct objectsin the database,and

w +¼» #��w +½» % �pS)S(S¡� w +¼» ¤ .
Createtheindex È suchthat È^�03 � �/	 equalsthatvalueof � where� +¼» j 6 � , for each�Q�=� and �O�73�� I . That is, È^�03 � ��	 is the

position(or rank)of � in thesortedlist � + .
Query-processing

Given �5� R a , for each3 , initialize two pointers ¾ + and ¿ + into� + sothat
w +¼» À)Á ��� + � w +½» ÂTÁ .Ã

will bea setof “seenelements”���z� andtheir distances��Ä
to � ; initialize

Ã
to Æ .É

will bea “thresholdvalue” that trackstheminimumdistance
thatany unseenelement � ?� Ã canachieve to � ; initialize

É
to
�
.

while
Ã

hasnoelement� s.t. ��ÄU� É do:

for �E�o3U� I do:

let Ê + 6 : w +¼» À Á _z� + : andË + 6 : w +¼» Â Á _z� + :
if Ê + WoË + then

set� 6 � +¼» À)Á anddecrement¾ +
else

set� 6 � +¼» ÂTÁ andincrement¿ +
if � ?� Ã , thenÌ 6 �

for ������� I do:Í 6 È^�0� � �/	 ; Ì 6 Ì � w %j�» Î
end-for
add� to

Ã
andset��Ä 67Ï Ì

end-if

end-forÉ 6 � a+0, #�Ð�ÑuÒ �0Ê + � Ë + 	 % 	 #Ó·V%
end-while

Outputtheelement��� Ã with thesmallest� Ä .
3. EXPERIMENTS

3.1 Data collection
Our experimentalsetupconsistsof two datasets,which we call

STOCK and HW respectively. In the following, we describethese
datasetsin detail. Notethatby usinga featurevectorin a suitable
high-dimensionalspacefor eachobject,onecan intepretsimilar-
ity/classificationproblemsasnearest-neighborproblems.

Thefirst datacollectionSTOCK wasderived from thehistorical
stockpricesof severalU.S.companies.Thedatawasfirst collected
from Yahoo!’s businesspageandconsistedof the entirerecorded
historyof stockpricesof 7999companies,excludingmutualfunds.
Eachcompany’s datawasthensplit into periodsrepresenting100
consecutive tradingdays(if therewasany remainderthe leastre-
cent data was discarded). We assumedthat $1 was investedin



the stock in the beginning of the trading period, and tracked the
progressÔ of thisonedollarthroughthe100-daytradingperiod.This
createda featurevectorin 100dimensions.This process,repeated
for eachcompany, resultedin a datasetof 145,619vectors,where
eachfeaturevectorresidesin a 100-dimensionalspace.This way
of partitioningthedatawasdonefor two reasons:first, to increase
thesizeof thedatasetwhile maintainingnontrivial dimensionality;
andsecond,to beableto comparedifferentstocksover reasonable
“windows” of time.

Theseconddatacollectionwasderivedfrom thepublicly avail-
ableMNIST databaseof handwrittendigits (at thewebsite
http://yann.lecun.com/exdb/mnist).

Theoriginal dataconsistedof a trainingsetof 60,000labeledex-
amplesanda testsetof 10,000examples. Eachgreyscaleimage
was of size28x28 and the labelswere from 0 to 9. The feature
vector of eachimagewas just the 784 pixel values. Thus, each
vectorresidesin a 784-dimensionalspace.Sincewe areinterested
only in nearest-neighbor-basedclassification(andnot training),we
collapsedthesetwo setsinto a singledatasetconsistingof 70,000
vectors.

Thesetwo datasetswerechosento becontrastingin morethan
oneaspectin orderto addsufficient diversity to our experiments.
While STOCK is a large datasetwith moderatedimension,HW is
a relatively smallerdataset,but with larger dimension. Another
importantdistinctionis thatthedatasetHW is implicitly clustered,
sinceit arosefrom 10 underlyingclasses.On the otherhand,no
naturalclusteringsemanticscanbeeasilyassociatedwith STOCK.
Finally, the problemsconsideredfor eachdatasetaredifferent—
similarity searchingfor the STOCK data,andclassificationperfor-
mancefor the HW data. Note that characterrecognition,asin the
HW dataset,is an arguably importantapplicationof approximate
nearestneighbors:it is moreimportanthereto classifythecharac-
terscorrectlythanit is to find theexactnearestneighbor.

We decidedto conductall theexperimentsby storingtheentire
datain themainmemory, andsohardwarelimitationspreventedus
from working with larger data. Notice, however, that by forcing
ourselvesto holdall thedatain mainmemory, we areonly helping
theL2NN andL2TA algorithms,whichwewill compareMEDRANK

andOMEDRANK against.If mostof thedatawereto resideon sec-
ondarystorage,thesealgorithmswould be far moreexpensive, as
they areproneto accessinga largefractionof thedatabase,which
might resultin increaseddiskaccess.

3.2 Setup
To studythe performanceof the algorithmsin reduceddimen-

sions,we performedrandomprojectionon the data. For STOCK,
we projectedthe datainto dimensionsDIM = 10, 20, 30, 40, 50.
For HW, we projectedthedatainto dimensionsDIM = 20, 40, 60,
80,120,160,200.For HW, thelabelof eachvectorwascollectedas
well to determinetheclassificationerror. TheparameterMINFREQ

waschosento be0.5,0.6,0.7,0.8,0.9; thisparameterhasinfluence
on theprobedepthof MEDRANK andOMEDRANK.

We implementedthe algorithmsL2NN, L2TA, MEDRANK, and
OMEDRANK in C++. Our experimentswererun on a 1GHz Pen-
tium machinewith about0.5GRAM. Note that our choiceof the
datasetensuresthatit will fit entirelyin mainmemory.

For theoriginal dimensionandeachof thereduceddimensions,
andfor eachvalueof MINFREQ, thealgorithmswererun on 1000
querieson both STOCK andHW. Thequerieswereselectedat ran-
domfrom thesamedataset.Variousparameters,describedbelow,
wereaveragedover these1000queries.(Whenconsideringquery� , we implicitly weresearchingthedatabase�fÕ � �q� .)

3.3 Parametersstudied
(1) Time. We study the basic running time of the algorithm

to computethe top 10 results. The runningtime includesquery-
specificpreprocessing.SinceL2NN on the full dimensionaldata
canbeconsideredareasonableapproximationto the“absolutetruth,”
we comparetherunningtime of eachalgorithmrelative to therun-
ningtimeof L2NN onthefull dimensionaldata.(EventhoughL2TA

on thefull dimensionaldatais an“exact” algorithm,it is consider-
ablyslower thanL2NN; hence,wecomparetherunningtimesof all
algorithmsto L2NN ratherthanto L2TA.)

(2) Quality. We usetwo differentnotionsof quality for STOCK

andHW. For STOCK, it is thefollowing. Let � bethequery, let Í be
the (top) point in the datasetreturnedby the algorithm(possibly
usingprojecteddata)for the query � , andlet Í�Ö be a point in the
datasetreturnedby L2NN onthefull dimensionaldatafor thesame
query � . Intuitively, Í Ö is the “right answer” (an actualnearest
neighbor).Thequality is definedto betheratio ��� Í � �$	2�V��� Í�Ö � �$	 .

In thecaseof HW, thequality is definedto bethefollowing. Re-
call thatwehavecollectedthelabelsfor HW data.Let � betheclas-
sificationerrorof ouralgorithms(possiblyusingprojecteddata)for
asetof queriesandlet � Ö betheclassificationerrorof L2NN onthe
full dimensiondatafor thesamesetof queries;here,classification
erroris thefractionof queriesonwhichthelabelreturnedby theal-
gorithmdiffersfrom thetruelabelof thequery.6 Thequality is then
definedto be the ratio �
�V� Ö . Themain reasonfor this, ratherthan
presentingtheabsoluteclassificationerror, is thattheclassification
error is not only a functionof thenearestneighboror aggregation
algorithm,but alsoa function of the underlyingfeatureset. (We
have not attemptedto optimizethe quality of the underlyingfea-
tures; that is outsidethe scopeof our work. We shall, therefore,
restrictourselves to comparingagainstthe bestthat a brute-force
nearestneighboralgorithmcanachieve.)

Thusboththesequantitiesaredefinedrelativeto theperformance
of L2NN on thefull dimensiondata.

(3) Probedepthand fraction accessed.Recall that algorithms
L2TA, MEDRANK, and OMEDRANK do not accessthe complete
databasein general. For MEDRANK and OMEDRANK which ac-
cessthe databasein a (database-friendly)sequentialmanner, we
recordthenumberof suchsequentialaccesses.In fact,we record
thenumberof suchaccessesto outputeachof thetop10 results.

Weanticipatetheprobedepthto becorrelatedwith theexpected
rankof theclosestpoint in thedatabasein eachof the I lists. (We
talk abouttheexpectation,sincethe I lists wereproducedproba-
bilistically.) Wecomputedthedistributionof thequantityrank�0��	 ,
where� is the“winner” for a query� (recall thatwe consider� as
a queryfor thedatabase�×Õ � �g� ). Thedistribution wascomputed
by averagingthe quantitiesover 1000 randomqueries. Figure1
presentsthedistribution;theexpectationof rank�0��	 (for theSTOCK

data)is roughly0.13,which meansthatwe expectMEDRANK and
OMEDRANK to probeonly 13%of thedataon theaverage!

ThealgorithmL2TA, in additionto sequentialaccesses,alsomakes
randomaccesses.Werecordthis informationaswell.

3.4 Results
Toavoid inundatingthereaderwith toomany numbers,wepresent

only asubsetof thebasicresultsof theexperimentson STOCK and
HW in Tables1 and2 respectively.

(1) Time. As canbe seenfrom the tables,even on full dimen-
sionaldata,the runningtimesof MEDRANK andOMEDRANK are
substantiallysmallerthanthat of L2NN (roughly only 35–45%of

6Thedatasetcontainsthetrueclasslabels.
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Figure1: Distrib ution of rank �0��	 .

thetime takenby L2NN). Onprojecteddata,MEDRANK andOME-
DRANK arefasterby two ordersof magnitude.Thesealgorithms
remainmuch fasterthan L2NN even at very high valuesof MIN-
FREQ.

We remarkthat this differencewould beevenmorepronounced
were the dataaccessedfrom disk. Moreover, if we hadcounted
the runningtime asthe time to computethe top result(insteadof
thetop10aswe donow), MEDRANK andOMEDRANK wouldhave
performedevenmoredramatically.

Algorithm L2TA offersa significantspeed-upat low dimensions
for the STOCK data,but is poorerat high dimensions,andconsis-
tently worsethanL2NN for the HW data.This canbeattributedto
thebookkeepingefforts in thealgorithm.

L2NN L2TA MEDRANK OMEDRANK

DIM Time Time Qual. Time Qual. Time Qual.
MINFREQ = 0.5

10 0.195 0.065 1.399 0.002 1.794 0.004 1.790
20 0.289 0.139 1.270 0.005 1.518 0.006 1.514
30 0.376 0.232 1.231 0.008 1.430 0.009 1.426
40 0.466 0.344 1.201 0.013 1.338 0.013 1.332
50 0.555 0.440 1.186 0.017 1.333 0.015 1.330
100 1.000 11.00 1.000 0.459 1.360 0.352 1.434

MINFREQ = 0.7
10 0.195 0.065 1.399 0.003 1.654 0.004 1.663
20 0.289 0.139 1.270 0.007 1.414 0.009 1.412
30 0.376 0.232 1.231 0.012 1.344 0.013 1.345
40 0.466 0.344 1.201 0.020 1.273 0.018 1.274
50 0.555 0.440 1.186 0.026 1.264 0.023 1.259
100 1.000 10.99 1.000 0.817 1.253 0.645 1.286

Table 1: Basic performance measures for the algorithms on
STOCK data at MINFREQ = 0.5,0.7. Time denotesthe time rela-
tive to L2NN in full dimensionsand qual. denotesthe distance
ratio relative to the oneobtainedby L2NN in full dimensions.

(2) Quality. Again, the tablesdemonstratethat the quality of
MEDRANK andOMEDRANK is high. For STOCK data,thefactorof
approximationis around2, meaningthattheclosestpoint foundby
thesealgorithmsis at mosta factorof 2 away from the optimum.
NotethatL2TA will actuallyfind thenearestneighborandtherefore
matchthe quality of L2NN for thatdimension.A moreimportant

L2NN L2TA MEDRANK OMEDRANK

dim. Time Time Qual. Time Qual. Time Qual.
MINFREQ = 0.5

20 0.042 0.236 11.38 0.004 23.75 0.004 23.25
40 0.063 0.616 6.042 0.010 12.50 0.011 14.17
60 0.087 1.030 3.875 0.019 10.47 0.018 10.00
80 0.110 1.458 3.625 0.029 7.917 0.026 7.167
100 0.134 1.876 3.542 0.040 7.083 0.033 6.625
120 0.156 2.319 3.333 0.052 6.667 0.042 5.208
160 0.203 2.400 2.830 0.078 4.583 0.063 4.583
200 0.250 - - 0.098 4.583 0.083 4.167

MINFREQ = 0.9
20 0.042 0.236 11.38 0.011 14.58 0.012 13.25
40 0.063 0.616 6.042 0.029 7.500 0.029 7.708
60 0.087 1.030 3.875 0.051 5.833 0.047 5.125
80 0.110 1.458 3.625 0.078 5.000 0.067 5.000
100 0.134 1.886 3.542 0.106 7.083 0.086 4.250
120 0.156 2.319 3.333 0.137 5.833 0.108 3.583
160 0.203 2.400 2.830 0.197 3.750 0.160 3.750
200 0.203 - - 0.253 3.750 0.208 3.750

Table 2: Basicperformanceof various algorithms on HW data
at MINFREQ = 0.5,0.9. Time denotesthe time relative to L2NN

in full dimensionsand Qual. denotesthe classification error
relative to the oneincurr edby L2NN on full dimensions.

point to noticeis thatafactor-2 approximationto thenearestneigh-
bor is foundatanamazinglylow (oftenlessthan1%)runningtime.
Theimprovementsaresomewhat lessdramaticfor theHW data:at
about6% of therunningtime, we areableto achieve anerror that
is roughly5 timesmore.

3.4.1 Otherstatistics
We presentsomeotherstatisticsaboutalgorithmsin Figures2–

5. Theseinclude:theeffectof theMINFREQ parameteronthetime,
thedepthto which thealgorithmsprobethedatabaseandits corre-
lation to therunningtime, thequality of thesolutionsproducedby
the MEDRANK algorithmasa functionof the MINFREQ parameter
andthe“top � ” parameter, andtheprobedepthandaccessstatistics
for the L2TA algorithm. The captionsfor the figureslist the main
observations.

3.4.2 Inferences
(1) BothMEDRANK andOMEDRANK areextremelyfastandscan

only an extremelysmall portion of the databaseeven when MIN-
FREQ is increasedto 0.9 (seeFigure 2). Thus, thesealgorithms
arevery databasefriendly andrepresentanextremelyefficient and
effective alternative to L2NN.

(2) Projectingthedatainto lowerdimensionsis alwaysanadvan-
tageousstep,if oneonly caresaboutapproximatenearestneigh-
bors.While preservingcorrelations,randomprojectionreducesthe
effectsof noise. On projecteddata(our caseof greatestinterest),
thequalityof thesealgorithmsalmostmatchesthatof L2NN on the
samedata,while therunningtimesaresignificantlybetter. Projec-
tion alsosignificantlyreduces—byatleastanorderof magnitude—
the depthof probesof thesealgorithms(seeFigure5). We con-
cludethatwhile projectionis agoodideaif oneis satisfiedwith an
approximatenearestneighbor, MEDRANK andOMEDRANK arefar
betteralternativesto L2NN (or evenL2TA) on theprojecteddata.

(3) ComparingMEDRANK andOMEDRANK, wenotethatin sev-
eralcases,OMEDRANK offersupto 20%speed-upover MEDRANK,
while preservingthequalityof results(seeTables1 and2).
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Figure2: MEDRANK time and probedepth asa function of MINFREQ on STOCK and HW data. Notes: (1) In both cases,dimensionhas
almost no effecton the probedepth. (2) Even at MINFREQ 6 ��'TÙ , time taken is very small.
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Figure 4: Probedepth of MEDRANK asa function of the top resultson STOCK/HW data for MINFREQ=0.5. Notes: (1) Dimensionality
reduction causessignificant impr ovement in the probedepth for STOCK data (compare 100dimensionsvs. lower dimensions).Note
that we did not conduct the HW data experimentson the full 784dimensions. (2) Whether we are computing top 1 or top 10 seems
not to affect probedepth by much in both cases.
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(4) The parameterMINFREQ hasa varying role in termsof its
significanceÜ to MEDRANK andOMEDRANK. For STOCK, we note
thatthisparameterplaysnosignificantrole; therefore,it sufficesto
keepit low (at 0.5),which yieldsexcellentrunningtimes.For HW,
it contributesto loweringtheerror(seeFigure3). However, asone
wouldsuspect,it affectstheprobedepth(andthereforetherunning
time) of thesealgorithms(seeFigure2). Yet, theprobedepthstill
remainsoneor two ordersof magnitudesmallerthanthesizeof the
database,pointingto therobustnessof thesealgorithms.

(5) We examinethequestionof how far MEDRANK hasto go to
uncover eachof thetop 10 resultsit produces.Figure4 shows this
asa functionof the top results.As canbeseen,thereis not much
differencebetweenobtainingthetop1 andthetop 10 results.

(6) We concludethat L2TA for thenearestneighborproblemof-
fers nontrivial but not a dramaticimprovementin speedat lower
dimensions,andtendsto becomepoorasthedimensionincreases
(seeTables1 and 2). Furtherconfirming this is Figure 5 which
shows the probedepthof MEDRANK vs. the probedepthand the
fractionof databaseaccessedby L2TA, asa functionof dimension.
It is easyto seethat L2TA accessesa largeconstantfractionof the
database,7whereasMEDRANK accessesonly a tiny fraction.

4. CONCLUSIONS
Wehaveintroducedrankaggregationasanew approachtowards

doing similarity searchandclassification.We take the queryand
thecandidatesto bepointsin amultidimensionalspace.Eachcoor-
dinateis treatedasavoter, whoranksthepointsbasedoncloseness
to thecorrespondingcoordinateof thequery. Thewinnersarethose
pointswith the highestaggregatedranks. Combinedwith dimen-
sionalityreduction,thisapproachyieldsasimple,database-friendly
algorithmthat givesa very goodapproximateanswerto the near-
estneighborproblem. The algorithmis extremelyefficient, often
exploring no morethan5% of thedatato obtainvery high-quality
results.We feel thattheapproachis conceptuallyinterestingin its
own right, not just asanapproximationto nearestneighbors.Our
resultsalsohighlight medianrank aggregationasan efficient and
usefulform of rankaggregation.

An interestingresearchdirectionis to considerthecaseof small
domainswhereseveralpointsareforcedto have thesamerankand
to to adaptour methodologyto exploit this feature.
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