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ABSTRACT

We proposenovel approacho performingefficientsimilarity search
andclassificationin high dimensionalata. In this framework, the
databaselementsarevectorsin a Euclideanspace Givena query
vectorin thesamespacethegoalis to find elementof thedatabase
thataresimilarto thequery In ourapproachasmallnumberof in-
dependentvoters”rankthe databaselementdasedon similarity
tothequery Thesaankingsarethencombinedoy ahighly efficient
aggr@ationalgorithm. Our methodologyleadsbothto techniques
for computingapproximateearesheighborsandto aconceptually
rich alternatve to nearesheighbors.

Oneinstantiationof our methodologyis asfollows. Eachvoter
projectsall thevectors(databaselementsandthe query)onaran-
domline (differentfor eachvoter),andranksthedatabaselements
basedon the proximity of the projectionsto the projectionof the
query Theaggreationrule picksthe databaselementhathasthe
bestmedianrank. This combinatiorhasseveralappealingeatures.
Onthetheoreticakide,we prove thatwith high probability, it pro-
ducesaresultthatis a (1+¢)-factorapproximatiorto theEuclidean
nearesheighbor Onthe practicalside,it turnsoutto beextremely
efficient, often exploring no more than 5% of the datato obtain
very high-qualityresults.This methodis alsodatabase-friendjyn
thatit accesseslataprimarily in a pre-definedorderwithout ran-
dom accessesand, unlike othermethodsfor approximatenearest
neighbors requiresalmostno extra storage.Also, we extend our
approacho dealwith the k nearesheighbors.

We conducttwo setsof experimentsto evaluatethe efficagy of
our methods.Our experimentsincludetwo scenariowherenear
estneighborsaretypically employed—similaritysearchandclassi-
fication problems.In both caseswe studythe performanceof our
methodswith respectto several evaluationcriteria, and conclude
thatthey areuniformly excellent,bothin termsof quality of results
andin termsof efficiengy.

1. INTRODUCTION

The neaest neighbor problemis ubiquitousin mary applied
areasof computerscience. Informally, the problemis: given a
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databaseD of n pointsin somemetric space,anda query g in
the samespace find the point (or the & points)in D closestto q.
Someprominentapplicationsof nearesheighborsncludesimilar-
ity searchin informationretrieval, patternclassificationdataanal-
ysis, etc. The popularityof the nearesneighborproblemis dueto
thefactthatit is oftenquite easyandnaturalto mapthefeaturesof
real-life objectsinto vectorsin a metric space;questiondike sim-
ilarity and classificationthenbecomenearesneighborproblems.
Sincethemappingof objectsinto featurevectorsis oftenaheuristic
step,in mary applicationdt sufiicesto find a pointin the database
thatis approximatelythe nearesheighbor Theseproblemdeadto
fascinatingcomputationajuestionsthereis anextensve literature
on efficiently computingnearestindapproximatelynearesneigh-
bors. For somerecenttheoreticalwork, see[18, 16, 19]; for recent
theoretical/applieavork, see[13,1, 12,5, 4, 20].

In this paper we proposea novel methodfor similarity search,
classificationproblems,and other nearest-neighbesearch-based
applications. Our methodis built on two basicparadigmsrank
aggregation [8] andinstanceoptimalalgorithms[11]. Our method
satisfieghe following two demandingeven conflicting, criteria: it
is arobustgeneralizatiorof nearesneighborsandit admitsalgo-
rithmsthatareextremelyefficientanddatabase-friendly

Thestartingpointfor ourwork is thefollowing simpleidea. Sup-
posewe areconductingnearesneighborsearchesvith a database
D of n pointsin the d-dimensionakpaceX ¢ (whereX is theun-
derlying set—reals {0, 1}, etc.),andaregivena queryq € X<
We may considereachcoordinateof the d-dimensionalspaceas
a‘“voter” andthen databas@ointsas“candidates’in anelection
processVoterj, for 1 < j < d, ranksall then candidate®asedn
how closethey areto thequeryin the j-th coordinate This givesus
d ranlked lists of the candidatesandour goalis to synthesizdrom
theseasingleorderingof thecandidatesye aretypically interested
in thetop few candidatesn this aggr@ateordering.

The rank aggregation problemis preciselythe problemof how
to aggr@atethe d ranked lists producecby the d coordinatesThe
history of this problemgoesback at leasttwo centuries,but its
mathematicalinderstandingook placein the last sixty years,and
theunderlyingcomputationaproblemsarestill within the purviev
of active research3, 14, 8]. The mostimportantmathematical
guestionson rank aggr@ation are concernedwith identifying ro-
bustmechanism$or aggreation;particularlynotevorthy achieve-
mentsin this field are the works of Young[21] and Youngand
Levenglick[22], who shavedthata proposabf Kemery [17] leads
to anaggrgationmechanisnthat possessemary desirableprop-
erties.For example,it satisfiethe Condocetcriterion, which says
thatif thereis a candidate: suchthatfor every othercandidate?, a



majority of thevotersprefersc to ¢, thenc shouldbe thewinnerof

the election. Aggregationmechanismshat satisfy the Condorcet
criterion and its naturalextensionsare consideredo yield robust
resultsthatcannotbe “spammed™by afew badvoters[8].

Kemely's proposalis the following: givenn candidatesandd
permutationsr, 72, . . ., 74 Of thesecandidatesproducethe per
mutationo thatminimizest:l K (m,0), whereK (7, o) denotes
the Kendalltau distancethatis, the numberof pairs(c, ¢) of can-
didateson which therankingsr ando disagregoneof themranks
c aheadf ¢, while theotherranksé aheadf ¢). Wewill call thisa
Kendall-optimalaggregation UnfortunatelycomputingaKendall-
optimal aggrgationof even4 lists is NP-completd8], soonehas
to resortto approximatioralgorithmsandheuristics.

Let us now explicatethe connectionbetweemearesheighbors
andrankaggregation. As a simplebut powerful motivating exam-
ple, notethatif the underlyingspaceis {0, 1}¢ endaved with the
Hammingmetric, then eachvoter really producesa partial order;
given a query g, the i-th voter partitionsthe databaseD into two
setsD = {z € D|z; = ¢}andD; = {z € D | =; # a:},
ranking all of D} aheadof D;". (The notions of Kendall tau
distanceandKendall-optimalaggreationstill remainmeaningful,
sincethey arebasedon comparingtwo candidatestatime.) It is
nothardto seethatin this casetheKendall-optimakggreationof
the partial ordersproducedby the voterspreciselysortsthe points
in the databasén order of their (Hamming)distanceto the query
vectorq. Consideringalsothe factthatthe nearesneighborprob-
lemsin several interestingmetricscan be reducedto the caseof
theHammingmetric[19, 16, 6], we notethattherankaggreation
viewpointis, in generalat leastas powerful asnearesneighbors.
(We will provide evenmorecompellingevidenceshortly)

Onthe otherhand,we have taken a problem(the nearesneigh-
bor problem)that canbe solved by a straightforvard algorithmin
O(nd) time andrecastit asan NP-completeproblem. Evensome
of the good approximationalgorithmsand heuristicsfor the ag-
gregation problem (e.g., see[8)]) take time at leastQ(nd 4 n?).
However, the confluenceof two key factorsrescueaus from this
dilemma. Firstly, we are interestedonly in the top few elements
in the aggrgateordering,andnot in the completeorderingof all
databas@oints. Secondlyin the contet of finding top & winners
in the aggreation, a heuristicbasedon medianranksturnsout to
admitanextremelyefficientimplementationWe turn to this next.

1.1 Median rank aggregation

While computingKendall-optimabhggreationsis unlikely to ad-
mit efficient algorithms,a polynomial-time computableordering
that is optimal in the footrule sense(detailsin Section2) yields
a factor2 approximationto a Kendall-optimalordering. More-
over, footrule-optimalaggregationhasthefollowing nice heuristic,
which we will call medianrank aggregatiornt sortall the pointsin
thedatabasbasednthemedianof theranksthey receve from the
d voters. This is areasonabléneuristic,sinceif the medianranks
are all distinct, thenthis procedureactually producesa footrule-
optimalaggr@ation[8]. Thus,wehavereducedurproblem(heuris-
tically) to that of finding the databaseoint with the bestmedian
rank (or the pointswith thetop few medianranks).

Insteadof viewing medianrank aggreation only as a heuris-
tic approximationto a Kendall-optimalaggreation, we consider
it to be a naturalrank aggregationapproachin its own right. As
we shall shav in Section2.1.1, medianrank aggrgationgivesan
optimalsolutionfor anotionof distancesimilarto thefootrule dis-
tance.Moreover, medianrankaggr@ationhastwo desirableguali-
ties,whichwe will now elaborateon.

Databasefriendliness and instance optimal algorithms. A
strongargumentfor usingmedianrankaggreationis its database
friendliness Specifically we wouldlik eto proposeasolutionto the
(approximatenearesineighborproblemthat haspropertiesdesir
ablein adatabassystem.deally, onewouldlik e to avoid methods
that involve comple datastructuresJarge storagerequirements,
or that male a large numberof randomaccesses.For example,
theseconsiderationsmmediatelyrule out the theoreticallyprov-
ably good methods[19, 16, 18]; even methodsfrom the recent
databasditerature[13, 1, 5] areencumberedvith oneor more of
theseproblems. By contrast,medianrank aggrgation usessort-
ing asthe only pre-processingteg, needsvirtually no additional
storage,andperformsvirtually no randomaccessesBy avoiding
randomaccesseqyur methoddoesnot needindicesthatcanlocate
thevalueof a coordinateof anelement.

We now discussan especiallyefficient approacto medianrank
aggr@ation.Let uspre-sorthen databasgointsalongeachof the
d coordinates Givena queryq = (qu, ..., q4), we caneasilylo-
catethevalueg;, for 1 < i < dinthei-th sortedlist, andplacetwo
“cursors”in this location. Oncethe 2d cursorshave beenplaced,
two for eachi, by moving onecursor‘up” andonecursor‘down,
we cannow producea streanthatproducegsherankedlist of the:-
th voter, oneelementat atime, andon demand. Thatis, we think
of the d votersas operatingin the following online fashion: the
first time thei-th voteris called,it will returnthe databaselement
closestto ¢ in coordinatei, the secondiime it will returnthe sec-
ond closestelementin coordinatei, andsoon. Thus, effectively,
we have anonlineversionof the aggregationproblemto solve.

The factthat we caneasily produceonline accesgo the d vot-
ers (with calls of the form “return the next most highly ranked
element”), togetherwith the fact that we would like to produce
the candidatewith the bestmedianrank, suggestshatit might be
possibleto identify this winner without even having to readthe
ranked lists in their entirety! Indeed,computingaggreationsof
scorelists usingan“optimal” numberof sequentiahndrandomac-
cesseso thelists—andhopefullywithouthaving to consultthelists
completely—hasttractednuchwork in recentdatabaséiterature
(e.g.[9, 11,15,2]—seealsothereferencei [10]). Wewill design
analgorithmin the spirit of the NRA or “no randomacces$,algo-
rithm from [11]. Themethodof [11], appliedto the onlinemedian-
rank-winnerproblem, yields an exceedinglycrisp algorithm that
canbe summarizedn onesentence Accesshe ranked lists from
the d voters, oneelemenf everylist at a time until somecandi-
dateis seenin more than half the lists—thisis thewinner We will
call this algorithmthe MEDRANK algorithm. We shall shav that
MEDRANK is notjust a goodalgorithm,but up to a constanimul-
tiple, it is the bestpossiblealgorithmon everyinstanceamongthe
classof algorithmsthataccesgsherankedlists in sequentiabrder
In fact,evenif we allow both sequentiabndarbitraryrandomac-
cessesthe algorithmtakestime thatis within a constantfactorof
the bestpossibleon every instance.This notionis calledinstance
optimalityin [11]. We generalizethe algorithmMEDRANK to find
thetop k objectsin the naturalway. For example,afterthewinner
is found, we continuethe algorithm by accessinghe ranked lists
until a secondelementis seenin morethanhalf the lists—thisis
the number2 element.We shav thatthis generalizedalgorithmis
alsoinstanceoptimal.

LIt is traditionalnot to chage nearest-neighbalgorithmsfor pre-
processingteps wheredatastructuresaresetup. Thisis because
in typical applicationsthe query-timeefficiency is muchmoreim-
portantthanthe costof preparingthe datastructures.

2A somevhat similar useof cursorsappearsn [6], in the context
of approximatenearesteighbordor the Hammingmetric.



Approximate nearestneighbors. Medianrankaggregationcan
be combinedwith anotherpowerful ideathat hasoften beencon-
sideredn the nearesheighbotiterature sincethe pioneeringvork
of Kleinbeig [18]. Theideais that of projectionsalong random
lines in the d-dimensionalspace. Specifically we shav in Sec-
tion 2, usinga simple geometriclemmafirst notedin [18], thatif
we projectthe n. databaseoints (aswell asthe query point) into
m dimensionswherem = O(e‘2 log n), andthenrun algorithm
MEDRANK on the projecteddata,thenwith high probability the
winneraccordingto the MEDRANK algorithmis an e-approximate
nearesteighborof the query point underthe Euclideanmetric.
(We saythatc is ane-approximatenearesneighborof ¢ if, for ev-
eryc € D,wehaved(c,q) < (1+ ¢€)d(¢, q), whered(-, -) denotes
the Euclideanmetric.)

1.2 Rank aggregationvs. nearestneighbors

We feel thatrank aggreationis a new androbust paradigmfor
similarity searchandclassification As we notedearliet it is prov-
ably as powerful asnearesineighborsandit hasa very efficient
implementatior(with essentiallyno sequentiabccesses)We now
pointoutanothemdwantageof rankaggreationover nearesheigh-
bors,in the contet of databasesConsiderasimilarity searctprob-
lem wherethe objectsdo not naturally fit in ary natural metric
space,suchasa catalogof applianceswherethe “features” may
be categyorical(eg., color),or maybenumericalbut wheredifferent
coordinateiave incompatibleunits(suchasdollarsversusnches).
In thesesituations, it is extremely artificial and questionableto
modelthe objectsaspointsin a metricspacewhereall coordinates
have the samesemanticsin thesesituations the rank aggreation
paradigmfits in naturally: whenlooking for objectssimilar to a
query object, simply sort the databaseaccordingto eachfeature
(eg., by color preferencecost, etc.), and aggregate the rankings
produced Catalogsearchearevery commondatabaseperations,
andour algorithmMEDRANK, suitablyimplementedshouldresult
in anefficient andeffective solutionto this problem.

1.3 Organization

Therestof this paperis organizedasfollows. Section2 presents
thetechnicalresultsconcerningn EDRANK andrelatedalgorithms,
and concludeswith a formal descriptionof the algorithms. Sec-
tion 3 describeur experimentsand presentsheir analysis. Our
experimentsincludedtwo of the primary applicationsof nearest
neighbors—similaritysearchandclassification.In both caseswe
shav that the aggregation approachyields excellentresults,both
qualitatively andin termsof efficiency. We malke someconcluding
commentsn Sectiord.

2. FRAMEW ORK AND ALGORITHMS

In the first part of this section,we describethe framework, in-
cluding necessarypreliminariesaboutrank aggrgationandabout
instanceoptimal algorithms. Therearetwo main technicalresults
in thispart: (1) areductionfrom the e-approximateéEuclideamear
estneighborproblemto the problemof finding the candidatewith
the bestmedianrankin an electionwheretherearen candidates
andO(e 2 log n) voters;and(2) aproofthatalgorithmMEDRANK,
which malesonly sequentiabccesseto the d ranked lists, males
atmostaconstanfactormoreaccessethananyalgorithmthatuses
sequentiahnd randomaccesseto thelists, for everydatabasand
query Thus,MEDRANK is instanceoptimalin the databasenodel
for computingthe medianwinner, andalsoyields a provably ap-
proximatenearesheighbor

2.1 Rank aggregation,nearestneighbors,and
instanceoptimal algorithms

2.1.1 Preliminaries

Let o and~ denotepermutation®n n objects;by o (7), we will
meanthe rank of object: underthe ordero (lower valuesof the
rankare“better”). Oftenwe will saythat: is ranked “aheadof” or
“petterthan” or “above” j by ¢ if o(i) < o(j). TheKendalltau
distancebetweens andr, denoteddy K (o, 7), is definedto bethe
numberof pairs(z, j) suchthateithero (i) > o(j) but7(z) < 7(j)
oro(i) < o(j) butr(i) > 7(j). Thefootruledistancebetweernr
andr, denoteddy F'(o, 7), is definedto be )", |o (i) — 7(4)].

Letr, 72, ..., Tm denoten permutation®f n objects.A Kendall-
optimal aggregatlon of r,..., Tm IS ary permutations suchthat
>, K(o,m)is minimized; S|m|IarIy, a footrule-optimalaggrega-
tion of 71,..., 7 is ary permutations suchthat} ", F(o, %) is
minimized. It is known [7] that K (o, 7) < F(o,7) < 2K (0, T).
It follows thatif o is afootrule-optimalaggr@ationof 71, ..., 7m,
thenthe total Kendalldistanceof o from 7y, ..., 7, (namelythe
quantity . K (o, 7;)) is within afactorof two of thetotal Kendall
distanceof the Kendall-optimabkggr@ationfrom 74, . . ., . Fur-
thermorealthoughcomputinga Kendall- optlmahggrgatlonis NP-
hard,computingafootrule-optimalggreationcanbedonein poly-
nomialtime via minimum-costperfectmatching[8]. Givenpermu-
tationsri, . .., Tm, We definefor eachobject: the quantity

medranl(z) = mediar{7i(7), ..., Tm(7)).
Thus,medrankassigngo eachobjectits medianrank. Thefollow-
ing easyproposition,pointedoutin [8], shavs thatin mary cases,
medianrankaggr@ationgivesafootrule-optimalaggreation.

PrRoOPOSITION 1. Let7i,72,.. ., ™m denotem permutationof
the sameset of objects,If the medianvaluesmediank(s) are all
distinct, thenmediankis a permutationthat is a footrule-optimal
aggregationof 71, ..., 7m.

Evenwhenthe medianranksare not distinct, the next proposi-
tion saysthat medianrank aggreation gives an optimal solution
for a notion of distancesimilar to the footrule distance. Let f
be a function that assignsa scoreto eachobject,andlet 7 be a
permutation both on the samesetof objects. Define M (f,7) =
> 1f(@) — 7(4)|, wherethe sumis taken over all objectsi. Thus,
M is similarto thefootruledistanceexceptthat f is afunctionthat
assignsscoresratherthana permutation.

PROPOSITION 2. Let7y, 72,.. ., ™m denotem permutationof
the samesetof objects. Thenmedank s a function f that mini-
mizesy "L, M(f,75).

PROOF. We wish to minimize the quantity >, M (f,7;) =
22 22 I F @) =7 ()] = 32, 325, [ (1) = 75(9)]. Itis clearthat
thislastquantityis minimizedby taking f (¢) tobethatvaluex; that
minimizes)_"" | |z; —7;(¢)|, for eachobjecti. Thus,we canmin-
imize for eacﬁ»objectz separatel,yandobtalntheoveraII minimum.
Fix ¢, andlet y; = 7;(¢). Thenwe wish to find z; thatminimizes
ZJ:1 |xs — y;]. Butit is well known (and easyto prove) that
>oiey |zi —y;|is minimizedby takingz; = mediartys, . . ., ym).
Hence > ", M(f. ;) is minimizedby taking f(7) to bethe me-
dlanrankofz Thepropositionfollows. [

Let D be a databasef n pointsin R%. For avectorq € R?,
a Euclideanneaestneighborof ¢ in D is ary pointz € D such
thatfor all y € D, we have d(z,q) < d(y, q), whered denotes
the usualEuclideandistance.For avectorg € R% ande > 0, an
e-approximateEuclideanneaestneighborof ¢ in D is ary point



x € D suchthatfor ally € D, wehaved(z, ¢) < (1 + €)d(y, q),
whered(-, -) denotegheusualEuclideandistancelLet|| - || denote
the Euclideannorm;thus,d(z,y) = ||z — y||.

2.1.2 Analgorithmfor nearneighbos

The ideaof projectingthe dataalongrandomlychoseninesin
R? was introducedin the context of nearesmneighborsearchby
Kleinberg [18]. Specifically considera point ¢ € R?, andlet
u,v € R? besuchthatd(v,q) > (1 + €)d(u,q). Supposewe
pick arandomunit vectorr in d dimensionsanefficientwayto do
thisisto pickthed coordinates, . .., r4 asi.i.d. randomvariables
distributed accordingto the standarchormaldistribution N (0, 1),
andnormalizethe vectorto have unit length. We thenprojectu, v,
andq alongr. Let (-, -} denotethe usualinnerproduct. Thenintu-
itively, we expectthe projection(u, r) of u to be somevhatcloser
to the projection(q, r) of ¢ thanthe projection(v, r) of v is. That
is, we expect(u — ¢, r) tobesmallerthan(v — ¢, r). Thefollowing
lemmaimplies a formal statemenbof this fact.

LEMMA 3 ([18]). Assumer,y € R? andlete > 0 besudh
that||y|| > (1 + ¢€)||z||. I r is arandomunit vectorin R (chosen
asdescribedabove),thenPr[(y,r) < (z,r)] < 1/2 —€/3.

By lettingz = u — g andy = v — ¢, it follows easilythat (u —
q,r) issmallerthan(v — ¢, r) with probabilityatleastl/2 + ¢/3.

Now let ¢ bea querypoint, letw € D bethe closestpointto g,
andlet B = {z € D | d(z,q) > (1 + €)d(w, q)}. Considera
fixedx € B. If we pick arandomvectorr andrankthepointsin D
accordingo theirdistance$rom theprojectionof ¢ alongr, thenw
is ranked aheadof = with probability atleastl/2 + €/3. Suppose
we pick several randomvectorsr, ..., r, andcreatem ranked
lists of the pointsin D asfollows: the j-th ranked list is obtained
by sortingthe pointsin D accordingto their projectionsalongr;.
Thenthe expectednumberof lists in which w is ranked aheadof
z is atleastrn(1/2 + ¢/3); indeed by standardChernof bounds,
if m = ae ?logn with o suitablychosenthenwith probability
atleast1 — 1/n?, we have thatw is ranked aheadof x in more
thanm(1/2 + €/6) of thelists. Summingup the error probability
overall x € B, we seethatthis implies that with probability at
leastl — 1/n, we have that w is ranked aheadof everyx € B
in morethanm(1/2 + €/6) of thelists; in particular the median
rank of w in them lists is betterthanthe medianrank of z in the
m lists. Therefore,if we computethe point z € D that hasthe
bestmedianrankamongthe m lists, then(with probability atleast
1 — 1/n), we have thatz cannotbe anelementof B, soit satisfies
d(z,q) < (1 + €)d(w, q). We summarizehis agumentbelow.

THEOREM 4. Let D be a collection of n pointsin R, Let
r1,...,7m berandomunit vectos in R, whee m = ae 2 logn
with o suitably chosen. Let ¢ € R? be an arbitrary point, and
define for eadh 7 with 1 < ¢ < m, therankedlist L; of then
pointsin D by sortingthemin increasingorder of their distance
to the projection of ¢ along r;. For ead elementx of D, let
medank(z) = media{Li(z),..., Lm(x)). Letz bea member

of D sud that medank(z) is minimized.Thenwith probability at
leastl — 1/n, wehaved(z, q) < (1 +€)d(z,q) forall z € D.

In fact, the above argumentshavs more. Let ¢ be a query let
w € D betheclosestpointto ¢, andlet w2 € D bethe second
closestpointto q. DefinethesetB, = {z € D | d(z,q) >
(14 €)d(w2,q)} (noticethatB. C B, whereB is the setdefined
earliertobe{z € D | d(z,q) > (1 + €)d(w, q)}. By similar
argumentsit follows thatwith high probability, the medianrank of
wy is betterthanthatof ary elementn Bs; thisimpliesthattheel-
ementz; with thesecondbestmedianrankmustsatisfyd(zz, ¢) <

(1 + €)d(w=,q). Similarly, for ary constant, it canbe shavn
thattheelements:, .. ., 2z thatachiere thethird throughthe k-th
bestmedianrankssatisfy respectrely, d(z;, q¢) < (1+€)d(wjy, q),
wherew; denoteghe j-th closestelemento thequeryg.

For the purpose®f implementationye cannotsortthe n points
of thedatabasen timesfor eachqueryq. Ratheraspartof thepre-
processingwe createm sortedlists of then pointsin D. Thei-th
sortedlist sortsthe pointsbasedon the valuesof their projections
alongthe i-th randomvectorr;. Thei-th sortedlist is of the form

(ci,v1),(c5,v3),...,(ch,vs), where(1) vi = (c},r;) for each
t, (2) v <5 < .. .vy,and(3) ¢, ..., ¢y, is a permutationof
1,...,n. Givenaqueryq € R?, we first computethe projection

of ¢ alongeachof the m randomvectors. For eachi, we locate
(rs, q) in the (secondcoordinateof the) i-th sortedlist, thatis, find

t suchthatvi < (r;,q) < wvi,,, andinitialize two cursorsto v;

andwvi,,. Oneof pointsci andci,, is now the databasepoint
whoseprojectionis closesto the projectionof ¢. (Thisis theonly
stepof thealgorithmthatwill requirerandomaccess.By suitably
moving oneof the two cursors‘up” or “down,” we canimplicitly

createa list in which the databasepoints are sortedin increasing
order of the distanceof their projectionsto ¢. This resultsin the
following form of sequentiahccesso them lists: thereis aroutine
thattakesa queryq € R? andinitializesthe 2m cursorsandthere
is a routinethat returnsthe next elementin the i-th list (in order
orderof proximity to the projectionof ¢ alongr;).

At the costof more storageand pre-processingwe could also
implement(full) randomaccessto the sortedlists with indices.
Then, given a point x € D, this routine would return the rank
of thepointz in thei-th sortedlist. OuralgorithmMEDRANK does
notneedsuchrandomaccess.

2.1.3 Instanceoptimalaggregation

We have now reducedheproblemof computingane-approximate
nearestneighborto the scenarioof [11], which we now outline.
Thereare m sortedlists, eachof lengthn (thereis oneentry in
eachlist for eachof the n. objects).Eachentry of the i-th list is of
theform (z, v;), wherew; is the i-th “grade” of . Thei-th list is
sortedin descendingrdef by thew; value. In our case; is sim-
ply therankof objectz in thei-th list (tiesarebroken arbitrarily).
Further thereis anaggregationfunction[9, 11] thattakesm scores
and producesan “aggregate” value. The goalis to identify the k
objectswith the highestaggregatevalues.

Therearetwo modesf accesso data,namelysorted(or sequen-
tial) accesaandrandomaccessUndersortedaccessthe aggr@a-
tion algorithm obtainsthe gradeof an objectin one of the sorted
lists by proceedinghroughthelist sequentiallyfrom thetop. Thus,
if objectz hasthe ¢-th highestgradein thei-th list, then/ sorted
accesseto the i-th list arerequiredto seethis rank undersorted
access.The secondmodeof accesss randomaccess.Here, the
aggreationalgorithmrequestshegradeof objectx in thei-th list,
andobtainsit in onerandomaccess.

In this scenario,our algorithm MEDRANK can be describedas
follows. Thevaluew; for objectz is therankof objectz in thei-th
list. ThealgorithmMEDRANK doessortedaccesso eachlist in par
allel. Thefirst objectthatit encounterén morethanhalf thelistsis
rememberedsthetop object(tiesarebrokenarbitrarily). Thenext
objectthatit encountersn morethanhalf thelists is remembered
asthenumber2 object,andsoon until thetop k objectshave been

%In [11], theorderis descendingwhich correspondo thefactthat
biggervaluesare“better”. For us, smallervaluesarebetter since
thevaluesareranks,andsowe would (logically) sortin ascending
order



determined at which time MEDRANK outputsthe top & objects.
Note thatthereareno randomaccessegin our applicationof this
algorithmfor approximatenearesheighborsasoutlinedabove, we
incur randomaccessesluring the initial setupof the cursors,but
not subsequently).In fact, whenthe aggreation function is the
median,it is easyto seethatthis algorithmis essentialljthe NRA
(“No RandomAccess”)algorithmof [11].

We shall shawv thatin this scenario algorithmMMEDRANK is in-
stanceoptimal[11], whichintuitively correspond$o beingoptimal
(up to a constanimultiple) for every databaseMore formally, in-
stanceoptimality is definedasfollows. Let A be a classof algo-
rithms,let D beaclassof databasesndlet cos{ A, D) bethetotal
numberof accessesortedandrandom)incurredby running A on
D.* An algorithm B is instanceoptimalover A andD if B € A
andif for every A € A andevery D € D we have

cos(B, D) = O(cos( A, D)). 1)

Equation(1) meansthat there are constantsc, ¢ > 0 suchthat
cos{B, D) < c-cos{(A, D) + ¢ for every choiceof A € A and
D € D. Theconstant is referredto asthe optimality ratio.

In ourcase D is theclassof all databasesonsistingof m sorted
lists, wherethe scoreof an objectin eachlist is its rankin that
list, and. A is the classof all correctalgorithms(thatfind thetop &
answerdgor themedianrank)underour scenariqwhereonly sorted
andrandomaccesseareallowed).

THEOREM 5. Let A andD beasdescribedabove Thenalgo-
rithm MEDRANK is instanceoptimalover A andD.

PrROOF. Assumethat the algorithm MEDRANK, when run on
D € D, haltsandgivesits outputjust afterit hasdone/ sorted
accessew eachlist. Hence the k-th lowestmedianrankis .

Let A be an arbitrary memberof A. Let us definea vacancy
in thei-th list to be aninteger j suchthatthe objectatlevel j in
thei-th list wasnot accessetly algorithm A undereithersortedor
randomaccessn the i-th list. Let U bethe setof lists that have
avacang at alevel lessthan/. We now shav thatthe sizeof U
is atmost|m/2]. Assumenot. Define D’ to be obtainedfrom D
by modifying eachlist in U asfollows. Let = beanew object,not
in the databaseéD. For eachlist in U, therankof z in thatlist is
takento bethelevel of thefirst vacany in thatlist, andwhatever
objectwasin this positionin thatlist in D is movedto the bottom
of thatlist. Objectz is placedat the bottomof eachlist notin U.
Intuitively, z fills thefirst vacany in eachlist in U. Sincetherank
of z is lessthan? for morethan half the lists, its medianrank is
strictly lessthan/. Now algorithm A performsexactly thesameon
D andD’, andsomusthave thesameoutput. Therefore algorithm
A makesa mistale on D', sincex is notin the top k list that A
outputs,even thoughz hasa medianrank lessthan the median
rank (¢) of somememberof the top & list that A outputs. This is
a contradiction,sinceby assumptionA is a correctalgorithm. So
indeed thesizeof U is atmost|m/2].

Let Q be the numberof accesseby A. From what we just
shaved, it follows that at least[m /2] lists have no vacang at a
level lessthan/. Thisimplies

Q= [m/2[(—1) = (m/2)(¢ —1).

Therefore,mé < 2Q + m. But mf is the numberof accesses
performedby MEDRANK. Hence,MEDRANK is instanceoptimal,
with optimality ratioatmost2. [

4In [11], the costof sortedandrandomaccessemay be different.
Takingthecostof all accesset bethesameaswe do here affects
thetotal costby at mosta constanmultiple.

In theproofof Theorenb, we saw thatthealgorithmMEDRANK
hasoptimality ratio at most2, with an additive constantof m. If
we wish to getrid of the additive constantwe canusethefactthat
@ > m/2 to getanoptimality ratio of 4, with no additive constant.
It is interestingto notethat the optimality ratiosthat are givenin
[11] areall linearor quadratidn m. Ouralgorithmis, asfar aswe
know, thefirst nontrivial examplein this contect with anoptimality
ratioindependenof m.

TherearesituationsvherealgorithmmEDRANK probeghesorted
lists morethanhalfway. However, it follows from resultsin [9] that
when the lists are independentlydravn at random,the expected
probe depthof MEDRANK is O(n!~%/(m+2))  Whenthe sorted
lists are positively correlated we expectterminationeven earlier
In fact,whentheranklists areproduceddy computingproximity of
therandomprojectionsof the databas@ointsto the corresponding
projectionsof the query it canbe shavn thatthe lists are signifi-
cantly correlated We omit the details.

We remarkthat MEDRANK is similar in an interestingway to
Fagin's algorithm(FA) [9], in thatFA haltsonly afterseeingk ob-
jectsin all m lists, whereasvEDRANK haltsafterseeingk objects
in morethanm/2 lists. In the caseof FA, the k objectsseenin all
m lists neednot be the top & objects,andsorandomaccesseare
still required.However, for MEDRANK, the k objectsseenin more
thanm /2 lists arenecessarilthe top k objects,andsonorandom
accessearerequired.

2.2 Summary of algorithms

We now presenformal description®f algorithmMEDRANK and
of two relatedalgorithms,OMEDRANK andL2TA. OMEDRANK is
a heuristicimprovementaimedat (further) improving its running
time, and algorithm L27A is an implementationof the “threshold
algorithm” of [11], an instanceoptimal algorithm for computing
Euclideannearesneighborsin the modelwheredatain eachco-
ordinateis accessedia sequentiabndrandomaccessesWe will
denoteby L 2NN the straightforvard algorithmfor finding nearest
neighborsvia alinearscanof all databaselements.

Thedescriptionsarein the standardpseudo-code’style; where
appropriatewe have decidedn favor of clarity over fine, gory de-
tails andboundaryconditions. Also, we will describethe proce-
duresto find the winner; the extensionsto finding the top & ele-
mentsarefairly straightforvard.

We will assumehatwe have a databaseD of n pointsin R™,
wherem = d (theoriginal Euclideanspacepr m = O(e~ 2 log n)
(the spaceatfter projectingall dataalongm randomlines). For
c € D andl < i < m,wewill write ¢; to denotethevalueof ¢ in
thei-th coordinate.

Algorithm MEDRANK is oneamonga family of aggreational-
gorithms,wherewe could strengtherthe notion of medianby con-
sideringquantilesotherthanthe 50-thpercentile We introducethe
parameteMINFREQ in MEDRANK to vary this valueto the other
quantiles. Even thoughthe algorithmswith othervaluesof MIN-
FREQ do not ostensiblyhave ary connectiorto nearesneighbors,
we expectthemto beexcellentaggreyationalgorithmsaswell. The
MINFREQ parameteis a strict lower boundon the numberof lists
anelementhasto appeatn beforeit is declaredhewinner Taking
themedianrankcorrespondto settingMINFREQ = 0.5. Theideais
thatby increasingv INFREQ, we canexpectto improve the quality
at the costof more probesinto the databasetherebypermittinga
quality—timetradeof.

SFor example,whenwe decremenbr incrementpointers,we do
not male explicit whatto do whenthey go out of range;similarly,
whenwe createauxiliary index structuresor sortedtables we will

notexplicitly sayhow they arestored(B-treeor flat array etc.).



Algorithm MEDRANK

Pre-processing

Createm lists L1, . .., L,, whereL; consistof thepairs(c, ¢;)

forallc € D.
For1 < ¢ < m, sortL; in ascendingrderof the secondcom-
ponent. Now eachL; hasthe form (ci 1, vi1), -, (Ci,n, Vi,n)s

wherethec; :’sarethen distinctobjectsin thedatabaseandv; 1 <
Vi,2 S - S Vin-
Query-pocessing

Giveng € R™, for eachi, initialize two pointersh; andl; into
L; SOthat’Ui,hi < qi < Vi1, -

S will bea setof “seenelements’ € D andtheir frequencies
fe; initialize S to (.

while S hasnoelementc s.t. f. > MINFREQ * m do:
forl <i<mdo:

if |U'L,hi — qi\ < |U¢7zi - qi| then
setc = ¢;,»; anddecremenh;

else
setc = ¢;,;; andincrement;
if c¢ S, then
addcto S andsetf. =1
else
incrementf.
end-for
end-while

Outputtheelementc € S with thelargestf..

Thesecondalgorithmwe describe DMEDRANK, is basedon the
following obsenationaboutMEDRANK (thenotationsareasin the
descriptionof thealgorithmMEDRANK). Insteadof comparingthe
valueswv; », andwv;;, andchoosingthe one closerto ¢;, we will
considerboth elementsc; », andc;,;,. Sincewe do not perform
ary randomaccessegeg., “find therankof ¢; 5, in someotherlist
L;"), this will increasethe numberof elementswe considerfor
membershipn S, but we save on mary comparisons.

Algorithm OMEDRANK

Pre-processing
Identicalto MEDRANK.

Query-pocessing
Givengq € R™, for eachi, initialize two pointersh; andl; into
L; sothatv; n, < q; < wy,.
S will bea setof “seenelements’c € D andtheir frequencies
fe: initialize S to .
while S hasno elementc s.t. f. > MINFREQ * m do:
forl1 <i<mdo:
forc € {ci,n;, ciy, } do:
if cZ S, then
addcto S andsetf. =1
else

incrementf.
end-for

decrement; andincrement;

end-for
end-while

Outputtheelementc € S with thelargestf..

Finally, we describeaninstanceoptimalalgorithmfor computing
Euclideamearesheighborsthis algorithmis anapplicationof the
“thresholdalgorithm’ or TA, of [11] to the problemof computing
Euclidean(or L2) nearestneighbors. This algorithm, which we
will call L2TA, canbeusedin placeof the naive nearesheighbors
algorithm,andis oftenmuchfaster

Algorithm L27A

Pre-processing

Createm lists L1, ..., Lm, whereL; consistof thepairs(c, ¢;)
forallc € D.

For1l < i < m, sortL; in ascendingrderof thesecondcompo-
nent.Now eachL; hastheform (c;,1, vi,1), ..., (¢i,n, vi,n), Where
the ¢;;’s arethe n distinct objectsin the databaseandv;; <
Vijz <o < Vi

Createtheindex P suchthatP(i, c) equalghatvalueof j where
¢i,j = ¢, foreachc € D andl < i < m. Thatis, P(i, c) is the
position(or rank) of ¢ in thesortedlist L;.

Query-pocessing

Giveng € R™, for eachi, initialize two pointersh; andl; into
L; sothatvi,hi <q <wi,.

S will beasetof “seenelements’c € D andtheir distancesi.
to ¢; initialize S to (.

T will bea “thresholdvalue” thattracksthe minimum distance
thatary unseerelementz ¢ S canachie/eto ¢; initialize 7" to 0.
while S hasnoelementc s.t.d. < T do:
forl <i<mdo:
leta; = [vi,n, — @| andb; = [viy, — il
if a; < b; then
setc = ¢;,», anddecrement;
else
setc = ¢;,;, andincrement;
if cZ S,then
s=0
for1 <j <mdo:
p=P(j.c)is =5+,
end-for
addcto S andsetd. = /s
end-if
end-for
T = (37, min(as, b))/
end-while
Outputtheelement: € S with thesmallestd,.

3. EXPERIMENTS

3.1 Data collection

Our experimentalsetupconsistsof two datasets,which we call
sTock and Hw respectrely. In the following, we describethese
datasetsin detail. Note thatby usinga featurevectorin a suitable
high-dimensionakpacefor eachobject, one canintepretsimilar
ity/classificationproblemsasnearest-neighbgsroblems.

Thefirst datacollectionstock wasderived from the historical
stockpricesof severalU.S.companiesThedatawasfirst collected
from Yahoo!s businesgpageand consistedof the entirerecorded
historyof stockpricesof 7999companiesexcludingmutualfunds.
Eachcompan’s datawasthensplit into periodsrepresentind.00
consecutie tradingdays(if therewasary remainderthe leastre-
cent datawas discarded). We assumedhat $1 was investedin



the stockin the beginning of the trading period, and tracked the
progresf thisonedollarthroughthe 100-daytradingperiod. This
createda featurevectorin 100dimensions.This processrepeated
for eachcompary, resultedin a datasetof 145,619vectors,where
eachfeaturevectorresidesin a 100-dimensionaspace.This way
of partitioningthe datawasdonefor two reasonsfirst, to increase
thesizeof thedatasetwhile maintainingnontrivial dimensionality;
andsecondto be ableto comparalifferentstocksover reasonable
“windows” of time.

The seconddatacollectionwasderived from the publicly avail-
ableMNIST databasef handwrittendigits (atthewebsite

http://yann. | ecun. com exdb/ mi st ).

The original dataconsistedf a training setof 60,000labeledex-
amplesanda testsetof 10,000examples. Eachgreyscaleimage
was of size 28x28 andthe labelswerefrom 0 to 9. The feature
vector of eachimagewas just the 784 pixel values. Thus, each
vectorresidesn a 784-dimensionaspace.Sincewe areinterested
only in nearest-neighberasedlassificationandnottraining),we
collapsedhesetwo setsinto a singledatasetconsistingof 70,000
vectors.

Thesetwo datasetswere choserto be contrastingn morethan
oneaspectin orderto add sufficient diversity to our experiments.
While sTocK is alarge datasetwith moderatedimension,Hw is
a relatively smallerdataset, but with larger dimension. Another
importantdistinctionis thatthe datasetHw is implicitly clustered,
sinceit arosefrom 10 underlyingclasses.On the otherhand,no
naturalclusteringsemanticxanbe easilyassociateavith STOCK.
Finally, the problemsconsideredor eachdatasetare different—
similarity searchingor the sTock data,andclassificationperfor
mancefor the HW data. Note that characterecognition,asin the
HW datasetjs an arguably importantapplicationof appoximate
nearesheighborsit is moreimportanthereto classifythe charac-
terscorrectlythanit is to find the exactnearesheighbor

We decidedto conductall the experimentsby storingthe entire
datain themainmemory andsohardwarelimitationspreventedus
from working with larger data. Notice, however, that by forcing
ourselesto hold all the datain mainmemory we areonly helping
theL2NN andL 2TA algorithmswhichwe will comparevMEDRANK
andoMEDRANK againstIf mostof thedatawereto resideon sec-
ondarystoragethesealgorithmswould be far more expensve, as
they areproneto accessing large fraction of the databasewhich
mightresultin increasedlisk access.

3.2 Setup

To studythe performanceof the algorithmsin reduceddimen-
sions,we performedrandomprojectionon the data. For STOCK,
we projectedthe datainto dimensionsdim = 10, 20, 30, 40, 50.
For HwW, we projectedthe datainto dimensionsdiM = 20, 40, 60,
80,120,160,200. For Hw, thelabelof eachvectorwascollectedas
well to determingheclassificatiorerror The parametemINFREQ
waschoserto be0.5,0.6,0.7,0.8,0.9; this parametehasinfluence
onthe probedepthof MEDRANK andOMEDRANK.

We implementecdthe algorithmsL 2NN, L2TA, MEDRANK, and
OMEDRANK in C++. Our experimentswvererun on a 1GHz Pen-
tium machinewith about0.5G RAM. Note that our choiceof the
datasetensureghatit will fit entirelyin mainmemory

For the original dimensionandeachof the reduceddimensions,
andfor eachvalueof MINFREQ, the algorithmswererun on 1000
querieson bothstock andHw. The querieswereselectedat ran-
domfrom the samedataset. Variousparametersjescribedelow,
wereaveragedover thesel000queries.(Whenconsideringquery
q, weimplicitly weresearchinghedatabase \ {q}.)

3.3 Parametersstudied

(1) Time We study the basic running time of the algorithm
to computethe top 10 results. The runningtime includesquery-
specificpreprocessing.Since L2NN on the full dimensionaldata
canbeconsideredreasonablapproximatiorto the“absolutetruth;’
we comparethe runningtime of eachalgorithmrelative to therun-
ningtime of L2NN onthefull dimensionatiata.(EventhoughL 2TA
onthefull dimensionablatais an“exact” algorithm,it is consider
ably slowerthanL 2NN; hencewe compareherunningtimesof all
algorithmsto L2NN ratherthanto L2TA.)

(2) Quality. We usetwo differentnotionsof quality for sTock
andHw. For STOCK, it is thefollowing. Let g bethequery letp be
the (top) point in the datasetreturnedby the algorithm (possibly
using projecteddata)for the queryq, andlet p* be a pointin the
datasetreturnedby L 2NN onthefull dimensionabtlatafor thesame
query g. Intuitively, p* is the “right answer” (an actualnearest
neighbor).The quality is definedto betheratiod(p, q) /d(p*, q).

In the caseof Hw, the quality is definedto bethefollowing. Re-
call thatwe have collectedthelabelsfor Hw data.Let e betheclas-
sificationerrorof ouralgorithms(possiblyusingprojecteddata)for
asetof queriesandlet ¢* betheclassificatiorerrorof L2NN onthe
full dimensiondatafor the samesetof queries;here,classification
erroris thefractionof queriesonwhichthelabelreturnedoy theal-
gorithmdiffersfrom thetruelabelof thequery® Thequalityis then
definedto betheratio e/e*. The mainreasorfor this, ratherthan
presentinghe absoluteclassificatiorerror, is thattheclassification
erroris not only a function of the nearesneighboror aggr@ation
algorithm, but alsoa function of the underlyingfeatureset. (We
have not attemptedo optimize the quality of the underlyingfea-
tures;thatis outsidethe scopeof our work. We shall, therefore,
restrictoursehesto comparingagainstthe bestthat a brute-force
nearesheighboralgorithmcanachieve.)

Thusboththesequantitiesaredefinedrelative to theperformance
of L2NN onthefull dimensiondata.

(3) Probe depthand fraction accessed.Recall that algorithms
L2TA, MEDRANK, and OMEDRANK do not accessthe complete
databasen general. For MEDRANK and OMEDRANK which ac-
cessthe databasén a (database-friendlyyequentialmanner we
recordthe numberof suchsequentiabhccessesln fact, we record
thenumberof suchaccessew outputeachof thetop 10 results.

We anticipatethe probedepthto be correlatedwith the expected
rankof theclosestpointin thedatabasén eachof them lists. (We
talk aboutthe expectation sincethe m lists wereproducedproba-
bilistically.) We computedhedistribution of the quantityrank(w),
wherew is the“winner” for aqueryq (recallthatwe considerg as
aqueryfor thedatabase \ {¢}). Thedistribution wascomputed
by averagingthe quantitiesover 1000 randomqueries. Figure 1
presentshedistribution; theexpectatiorof rank(w) (for thestock
data)is roughly 0.13,which meanghatwe expectMEDRANK and
OMEDRANK to probeonly 13%of the dataon theaverage!

ThealgorithmL2TA, in additionto sequentiahccesseslsomales
randomaccessesiVe recordthis informationaswell.

3.4 Results

To avoid inundatingthereademwith toomary numbersyve present
only asubsebf the basicresultsof the experimentson stock and
HW in Tablesl and2 respecitiely.

(1) Time As canbe seenfrom the tables,even on full dimen-
sionaldata,the runningtimes of MEDRANK and OMEDRANK are
substantiallysmallerthanthat of L2NN (roughly only 35—45%o0f

5Thedatasetontainghetrueclasslabels.
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thetime takenby L 2NN). On projecteddata,MEDRANK andOME-
DRANK arefasterby two ordersof magnitude. Thesealgorithms
remainmuch fasterthan L2NN even at very high valuesof MIN-
FREQ.

We remarkthatthis differencewould be even morepronounced
were the dataaccessedrom disk. Moreover, if we had counted
the runningtime asthe time to computethe top result(insteadof
thetop 10 aswe do now), MEDRANK andOMEDRANK would have
performedeven moredramatically

Algorithm L27a offersa significantspeed-umt low dimensions
for the sTock data,but is poorerat high dimensionsand consis-
tently worsethanL 2NN for the Hw data. This canbe attributedto
thebooklkeepingeffortsin thealgorithm.

L2NN L2TA MEDRANK OMEDRANK
DIM || Time | Time Qual. | Time Qual. | Time Qual.
MINFREQ = 0.5
10 || 0.195| 0.065 1.399| 0.002 1.794| 0.004 1.790
20 || 0.289| 0.139 1.270| 0.005 1.518| 0.006 1.514
30 || 0.376| 0.232 1.231| 0.008 1.430| 0.009 1.426
40 || 0.466| 0.344 1.201| 0.013 1.338| 0.013 1.332
50 || 0.555| 0.440 1.186| 0.017 1.333| 0.015 1.330
100 || 1.000| 11.00 1.000| 0.459 1.360| 0.352 1.434
MINFREQ = 0.7
10 || 0.195| 0.065 1.399| 0.003 1.654| 0.004 1.663
20 || 0.289| 0.139 1.270| 0.007 1.414| 0.009 1.412
30 || 0.376| 0.232 1.231| 0.012 1.344| 0.013 1.345
40 || 0.466| 0.344 1.201| 0.020 1.273| 0.018 1.274
50 || 0.555| 0.440 1.186| 0.026 1.264| 0.023 1.259
100 || 1.000| 10.99 1.000| 0.817 1.253| 0.645 1.286

Table 1: Basic performance measuees for the algorithms on
STOCK data at MINFREQ = 0.5,0.7. Time denotesthe time rela-
tiveto L2NN in full dimensionsand qual. denotesthe distance
ratio relative to the oneobtained by L2NN in full dimensions.

(2) Quality. Again, the tablesdemonstratehat the quality of
MEDRANK andOMEDRANK is high. For sTock data,thefactorof
approximatioris around2, meaningthatthe closestpoint foundby
thesealgorithmsis at mosta factorof 2 away from the optimum.
NotethatL 2TA will actuallyfind thenearesheighborandtherefore
matchthe quality of L2NN for thatdimension. A moreimportant

L2NN L2TA MEDRANK OMEDRANK
dim. || Time | Time Qual. | Time Qual. | Time Qual.
MINFREQ = 0.5
20 || 0.042| 0.236 11.38| 0.004 23.75| 0.004 23.25
40 || 0.063| 0.616 6.042| 0.010 12.50| 0.011 14.17
60 || 0.087| 1.030 3.875| 0.019 10.47| 0.018 10.00
80 || 0.110| 1.458 3.625| 0.029 7.917| 0.026 7.167
100 || 0.134| 1.876 3.542| 0.040 7.083| 0.033 6.625
120 || 0.156| 2.319 3.333| 0.052 6.667| 0.042 5.208
160 || 0.203| 2.400 2.830| 0.078 4.583| 0.063 4.583
200 || 0.250 - - 0.098 4.583| 0.083 4.167
MINFREQ =0.9
20 || 0.042| 0.236 11.38| 0.011 14.58| 0.012 13.25
40 || 0.063| 0.616 6.042| 0.029 7.500| 0.029 7.708
60 || 0.087| 1.030 3.875| 0.051 5.833| 0.047 5.125
80 || 0.110| 1.458 3.625| 0.078 5.000| 0.067 5.000
100 || 0.134| 1.886 3.542| 0.106 7.083| 0.086 4.250
120 || 0.156| 2.319 3.333| 0.137 5.833| 0.108 3.583
160 || 0.203| 2.400 2.830| 0.197 3.750| 0.160 3.750
200 || 0.203 - - 0.253 3.750| 0.208 3.750

Table 2: Basic performance of various algorithms on Hw data
at MINFREQ = 0.5, 0.9. Time denotesthe time relative to L2NN
in full dimensionsand Qual. denotesthe classification error
relative to the oneincurr ed by L2NN on full dimensions.

pointto noticeis thatafactor2 approximatiorto thenearesheigh-
boris foundatanamazinglylow (oftenlessthan1%)runningtime.
Theimprovementsaresomevhatlessdramaticfor the Hw data:at
about6% of the runningtime, we areableto achievze anerrorthat
is roughly5 timesmore.

3.4.1 Otherstatistics

We presentsomeotherstatisticsaboutalgorithmsin Figures2—
5. Theseanclude:theeffect of theMINFREQ parameteonthetime,
the depthto which thealgorithmsprobethe databasandits corre-
lation to therunningtime, the quality of the solutionsproducedoy
the MEDRANK algorithmasa function of the MINFREQ parameter
andthe“top k" parametgrandthe probedepthandaccesstatistics
for the L2T1A algorithm. The captionsfor the figureslist the main
obsenrations.

3.4.2 Inferences

(1) BothMmEDRANK andOMEDRANK areextremelyfastandscan
only an extremely small portion of the databasevenwhenmin-
FREQ is increasedo 0.9 (seeFigure 2). Thus, thesealgorithms
arevery databasdriendly andrepresentin extremelyefficient and
effective alternatve to L 2NN.

(2) Projectingthedatainto lowerdimensionss alwaysanadwan-
tageousstep,if oneonly caresaboutapproximatenearesieigh-
bors.While preservingcorrelationsrandomprojectionreduceghe
effectsof noise. On projecteddata(our caseof greatesinterest),
the quality of thesealgorithmsalmostmatcheghatof L2NN onthe
samedata,while the runningtimesaresignificantlybetter Projec-
tion alsosignificantlyreduces—byytleastanorderof magnitude—
the depthof probesof thesealgorithms(seeFigure5). We con-
cludethatwhile projectionis agoodideaif oneis satisfiedwith an
approximatenearesneighboyr MEDRANK andOMEDRANK arefar
betteralternatesto L2NN (or evenL2TA) ontheprojecteddata.

(3) ComparinguEDRANK andOMEDRANK, we notethatin sev-
eralcasespMEDRANK offersupto 20%speed-umver MEDRANK,
while preservinghe quality of results(seeTablesl and?2).
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Figure2: MEDRANK time and probedepth asa function of MINFREQ on sTOCK and Hw data. Notes: (1) In both casesdimensionhas
almostno effecton the probedepth. (2) Evenat MINFREQ = 0.9, time takenis very small.
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Quality of MEDRANK as a function of MINFREQ on STOCK/HW data
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asa function of dimensionality than STock data. (2) MINFREQ seemanot to affect resultson sTock data much, but on the Hw data,

minfreq

avalue of roughly 0.7 seemdo be the best.
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Figure 4: Probedepth of MEDRANK asa function of the top resultson sTock/Hw data for MINFREQ=0.5. Notes: (1) Dimensionality
reduction causessignificant impr ovementin the probe depth for sTock data (compare 100dimensionsvs. lower dimensions). Note
that we did not conductthe Hw data experimentson the full 784 dimensions. (2) Whether we are computing top 1 or top 10 seems

Probe depth of MEDRANK as a function of the top results on STOCK/HW data for MINFREQ = 0.5
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not to affect probedepth by much in both cases.



Fraction of the database accessed by MEDRANK and L2TA as a function of dimension on STOCK data
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Figure 5: Fraction of the databaseaccessedy L2TA and MEDRANK asa function of dimensionon sTock and Hw data. Note: (1)
MEDRANK and OMEDRANK accessn order of magnitude fewer elementsof the databasethan L27a.



(4) The parameteMINFREQ hasa varying role in termsof its
significanceto MEDRANK and OMEDRANK. For STOCK, we note
thatthis parameteplaysno significantrole; thereforejt sufiicesto
keepit low (at0.5),whichyieldsexcellentrunningtimes. For Hw,
it contritutesto loweringtheerror(seeFigure3). However, asone
would suspectit affectsthe probedepth(andthereforetherunning
time) of thesealgorithms(seeFigure2). Yet, the probedepthstill
remainsoneor two ordersof magnitudesmallerthanthesizeof the
databasepointingto therohustnes®of thesealgorithms.

(5) We examinethe questionof how far MEDRANK hasto go to
uncover eachof thetop 10 resultsit producesFigure4 shaws this
asa function of thetop results. As canbe seenthereis not much
differencebetweerobtainingthetop 1 andthetop 10results.

(6) We concludethatL 2TA for the nearesheighborproblemof-
fers nontrivial but not a dramaticimprovementin speedat lower
dimensionsandtendsto becomepoor asthe dimensionincreases
(seeTables1 and 2). Furtherconfirmingthis is Figure 5 which
shaws the probedepthof MEDRANK vs. the probedepthandthe
fractionof databas@ccessedly L 2TA, asafunctionof dimension.
It is easyto seethatL 2TA accessea large constantraction of the
databaséwhereasuEDRANK accessesnly atiny fraction.

4. CONCLUSIONS

We have introducedrankaggre@ationasanew approachiowards
doing similarity searchand classification. We take the queryand
thecandidateso bepointsin amultidimensionakpace Eachcoor
dinateis treatedasa voter, who ranksthe pointsbasedn closeness
tothecorrespondingoordinateof thequery Thewinnersarethose
pointswith the highestaggrgatedranks. Combinedwith dimen-
sionalityreductionthisapproaclyieldsasimple,database-friendly
algorithmthat givesa very good approximateanswerto the near
estneighborproblem. The algorithmis extremely efficient, often
exploring no morethan5% of the datato obtainvery high-quality
results.We feel thatthe approachis conceptuallyinterestingin its
own right, not just asan approximatiorto nearesteighbors.Our
resultsalsohighlight medianrank aggr@ation as an efficient and
usefulform of rankaggreation.

An interestingresearchdirectionis to considerthe caseof small
domainswhereseveral pointsareforcedto have the samerankand
to to adaptour methodologyto exploit this feature.
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