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Abstract 

Latent semantic indexing (LX) is an information re- 
trieval technique based on the spectral analysis of the 
term-document matrix, whose empirical success had hereto- 
fort been without rigorous prediction and explanation. 
We prove that, under certain conditions, LSI does suc- 
ceed in capturing the underlying semantics of the corpus 
and achieves improved retrieval performance. We also 
propose the technique of random projection as a way of 
speeding up LSI. We complement our theorems with en- 
couraging experimental results. We also argue that our 
results may be viewed in a more general framework, as 
a theoretical basis for the use of spectral methods in a 
wider class of applications such as collaborative filter- 
ing. 

1 Introduction 

The field of information retrieval has traditionally been 
considered outside the scope of database theory. While 
database theory deals with queries that are precise pred- 
icates (the so-called “employee-manager-salary paradigm”), 
in information retrieval we have the rather nebulous and 
ill-defined concept of “relevance”, which depends in in- 
tricate ways on the intent of the user and the nature 
of the corpus. Evidently, very little theory can be built 
on this basis. See 
retrieval, inclu 6 ing 

[lo, 211 for surveys on information 
discussions of the technique that is 

the focus of this paper., from database and theoretical 
points of view, respectrvely; [22, 231 are classical texts 
on the subject of information retrieval.) 

However, the field of information retrieval has been 

evolving in directions that bring it closer to databases. 
Information retrieval systems are increasingly being built 
on relational (or object-relational) database systems, 
rather than on flat text and index files. Another im- 
portant change is the dramatic expansion of the scope 
of information retrieval. with the advent of multime- 
dia, the internet, and giobalized information; database 
concepts and some theory have started to find fertile 
ground there (see for example [9,3,18], as well a record 
number of information retrieval papers in the 1997 SIG- 
MOD Proceedings)’ Secondly, the techniques employed 
in information retrieval have become more mathemati- 
cal and sophisticated, more plausibly amenable to an- 
alytical treatment. The present paper is an attempt 
to treat rigorously one such technique, latent semantic 
indexing @XI), introduced next. Thirdly, information 
retrieval systems are increasingly being built on rela- 
tional (or object-relational) database systems (rather 
than on flat text and index files). Finally, the advent of 
the web has enabled powerful new applications such as 
collaborativefiltering (also known as target or personal- 
ized recommendation systems) that can be tackled using 
techniques inspired in part by information retrieval [4]; 
more on this in Section 6. 

IR and LSI 

The complexity of information retrieval is best illus- 
trated by the two nasty classical problems of synonymy 
(missing documents with references to “automobile” when 
querying on “car”) and polysemy (retrieving documents 
about the internet when querying on “surfing”). To deal 
with these two and other similar problems, we would 
ideally like to represent documents (and queries) not by 
terms (as in conventiomd vector-based methods), but by 
the underlying (latent, hidden] concepts referred to by 
the terms. This hidden structure is not a fixed many- 
to-many mapping between terms and concepts, but de- 
pends critically on the corpus (document collection) in 

‘And, perhaps as importantly, the stakes have become too 
high for database theory to lightly pass this field by. 
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hand, and the term correlations it embodies. 
Latent Semantic Indexing [6] is an information re- 

trieval method which attempts to capture this hidden 
structure by using techniques from linear algebra. Briefly 
(see the next section for a more detailed description), 
vectors representing the documents are projected in a 
new, low-dimensional space obtained by singular value 
&composition of the term-document matrix A (see the 
next subsection). This low-dimensional space is spanned 
by the cigenvcctors of ATA that correspond to the few 
largest eigcnvalues -and thus, presumably, to the few 
most striking correlations between terms. Queries are 
also projected and processed in thii low-dimensional 
space, This results not only in great savings in stor- 
age and query time (at the expense of some consider- 
able preprocessing), but also, according to empirical ev- 
idence reported in the literature, to improued informa- 
tion retrieval [l, 7, 81. Indeed, it has been repeatedly 
reported that LSI outperforms, with regard to precision 
and recall in standard collections and query workloads, 
more conventional vector-based methods, and that it 
does address the problems of polysemy and synonymy. 

There is very little in the literature in the way of a 
mathematical theory that predicts this improved perfor- 
mance, An interesting mathematical fact due to E&art 
and Young (stated below as Theorem l), often cited 
as an explanation of the improved performance of LSI, 
states, informally, that LSI retains as much as possi- 
ble the relative position of the document vectors. Thii 
may only provide an explanation of why LSI does not 
deteriorate too much in performance over conventional 
vector-space methods; it fails to justify the observed im- 
provement in precision and recall. 

This paper is a first attempt at using mathemati- 
cal techniques to rigorously explain the empirically ob- 
served improved performance of LSI. Since LSI seems to 
exploit and reveal the statistical properties of a corpus, 
WC must start with a riaorous nrobabilistic model of the 
corpus (that is to say; a maihematical model of how 
corpora arc generated); we do this in Section 3. Briefly, 
we model topics as probability distributions on terms. 
A document is then a probability distribution that is 
the convex combination of a small number of topics. 
WC also include in our framework style of authorship, 
which we model by a stochastic matrix that modifies 
the term distribution. A corpus is then a collection of 
documents obtained by repeatedly drawing sample doc- 
uments. (In Section 6 we brieflv discuss an alternative 
probabiliitic model, motivated ;n part by applications 
to collaborative filtering.) 

Once we have a corpus model, we would like to de- 
termine under what conditions LSI results in enhanced 
retrieval, We would like to prove a theorem stating 
essentially that if the corpus is a reasonablyfocused col- 
lection of meaningfully correlated documents, then LSI 
performs urell. The problem is to define these terms 
50 that (1) there is a reasonably close correspondence 
with what they mean intuitively and in practice, and 
(2) the theorem can be proved. In Section 4 we prove 

results that, although not quite as general as we would 
have liked, definitely point to this direction. In particu- 
lar, we show that in the special case in which (a) there 
is no style modifier; (b) each document is on a single 
topic; and (c) the terms are partitioned among the top 
its so that each topic distribution has high probability 
on its own terms, and low probability on all others; then 
LSI, projecting to a subspace of dimension equal to the 
number of topics, wilI discover these topics exactly, with 
high probability (Theorem 2). 

In Section 5 we show that, if we project the term- 
document matrix on a completely random low-dimensional 
subspace, then with high probability we have a distance- 
preservation property akin to that enjoyed by LSI. This 
suggests that random projection may yield an interest- 
ing improvement on LSI: we can perform the LSI pre- 
computation not on the original term-document matrix, 
but on a low-dimensional projection, at great compu- 
tational savings and no great loss of accuracy (Theo- 
rem 4). 

Random projection can be seen as an alternative to 
(and a justification of) somplingin LSI. Reports on LSI 
experiments in the literature seem to suggest that LSI 
is often done not on the entire corpus, but on a ran- 
domly selected subcorpus (both terms and documents 
may be sampled, although it appears that most often 
documents are). There is verv little non-emnirical evi- 
dence of the a&racy of such Isampling, Our iesult sug- 
gests a different and more elaborate (and computation- 
ally intensive) approach -projection on a random low- 
dimensional subspace- which can be rigorously proved 
to be accurate. 

2 LSI background 

A corpusis a collection of documents. Each document is 
a collection of terms from a universe of n terms. Each 
document can thus be represented as a vector in !I?“‘ 
where each axis represents a term. The ith coordinate 
of a vector represents some function of the number of 
times the ith term occurs in the document represented 
by the vector. There are several candidates for the right 
function to be used here (O-l, frequency, etc.), and the 
precise choice does not affect our results. 

Let A be an n x m matrix of rank r whose rows rep 
resent terms and columns represent documents. Let the 
singular values of A (the eigenvalues of AAT) be u1 2 
c72 2 -*. 2 Us (not necessarily distinct). The singular 
ualue decomposition of A expresses A as the product of 
three matrices A = UDV*, where D = diag(gl, . . . , CT?) 
is an rxr matrix, U =(ul,...,u+) is an n xr matrix 
whose columns are orthonormal, and V = (VI,. . . , v,) 
is an m x r matrix which is also column-orthonormal. 

LSI works by omitting all but the I; largest singular 
values in the above decomposition, for some appropri- 
ate L; here 5 is the dimension of the low-dimensional 
space alluded to in the informal description on page 2. 
It should be small enough to enable fast retrieval, and 
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large enough to adequately capture the structure of the 
corpus (in practice, b is in the few hundreds, compared 

Al, = vkDk@ 

hi a matrix of rank k, which is our approximation of A. 
The rows of l$Db above are then used to represent the 
documents. In other words, the column vectors of A 
(documents) are projected to the k-dimensional space 
spanned by the column vectors of u,V; we sometimes 
call this space the LSI space of A. How good is this ap- 
proximation? The following well-known theorem gives 
us some idea (the subscript F denotes the Frobenius 
norm), 

Tlrcorom 1 (I%kaTt and Young, see [15/) Among all 
n x m matrices 0 o 

’ 
rank at most k, Ak is the one that 

minimizes /iA - C((, = Ci,, (Ai,j - Ci,J)2- 

Therefore, LSI preserves (to the extent possible) the 
relative distances (and hence, presumably, the retrieval 
capabilities) in the term-document matrix while pro- 
jecting it to a lower-dimensional space. It remains to be 
seen in what way it improves these retrieval capabilities. 

3 The probabilistic corpus model 

There are many useful formal models of IR in the lit- 
erature, and probability plays a major role in many of 
them -see for instance the surveys and comparisons in 
[13, 22, 241. The approach in this body of work is to 
formulate information retrieval as a problem of learning 
the concept of “relevance” that relates documents and 
queries, The corpus and its correlations plays no cen- 
trnl role In contrast, our focus is on the probabilistic 
properties of the corpus. 

Since LSI is supposed to exploit and bring out the 
structure of the corpus, it will fare well in a meaning- 
ful collection of strongly correlated documents, and will 
produce noise in a random set of unrelated documents. 
In order to study the dependence of the performance of 
LSI on the statistical properties of the corpus, we must 
start with a probabilistic model of a corpus. We state 
now our basic probabilistic model, which we will use for 
much of this paper, 

Let the universe of all terms be U. A topic is a 
probability distribution on U. A meaningful topic is 
very different from the uniform distribution on U, and 
is concentrated on terms that might be used to talk 
nbout a particular subject. For example, the topic of 
“space travel” might favor the terms “galaxy” and “star- 
ship”, while rarely mentioning ‘misery” or “spider”. A 
possible criticism against this model is that it does not 
take into account correlations of terms within the same 
topic (for example, a document on the topic “internet” 
is much more likely to contain the term “search” if it 
also contains the term “engine”). 

The structure of documents is also heavily affected 
by authorship style. We model style as a [VI x lU[ 
stochastic matrix (a matrix with nonnegative entries 
and row sums equal to l), denoting the way whereby 
style modifies the frequency of terms. For example, a 
“formal” style may map &car” often to “automobile” 
and “vehicle,” and seldom to %a?’ - and almost never 
to %heeIs.” Admittedly, this is not a comprehensive 
treatment of style; for example, it makes the assumption 
- not alwavs valid - that thii influence is indenendent 
of the und&lying topic. 

. 

A corpus model C is a quadruple C = (U, 7, S, D), 
where U is the universe of terms, I is a set of topics, 
and S a set of styles, and D a probability distribution 
onFxSxZ+, where by Z? we denote the set of all 
convex combinations of topics in ‘/, by 3 the set of all 
convex combinations of styles in S, and by Zt the set 
of positive integers (the integers represent the lengths 
of documents). That is, a corpus model is a probability 
distribution on topic combinations (intuitively, favor- 
ing combinations of a few related topics), style combi- 
nations, and document lengths (total number of term 
occurrences in a document). 

A document is generated from a corpus model C = 
(U, T,S, D) through the following two-step sampling 
process. In the first step, a convex combination of top- 
ics 5!’ from 9, a convex combination of styles 3 from 3, 
and a positive integer 1 are sampled according to dii 
tribution D. Then terms are sampled e times to form 
a document, each time according to distribution E!‘.!?. A 
corpus of size m is a collection of m documents gener- 
ated from C by repeating this two-step sampling process 
m times. 

4 An analysis of LSI 

Does LSI indeed bring together semantically related doc- 
uments? And does it deal effectively with the problem 
of synonymy? We present below theoretical evidence 
that it does. Our results assume the corpus model has 
a particularly simple structure. We show that, in thii 
case, LSI does discover the structure of the corpus, and 
handles synonymy well. These results should be taken 
only as indications of the kinds of results that can be 
proved; our hope is that the present work will lead to 
more elaborate techniques, so that LSI can be proved 
to work well under more realistic assumptions. 

We will first need a useful lemma, which formalizes 
the following intuition: if the k largest singular values of 
a matrix A are well-separated from the remaining sin- 
gular values, then the subspace spanned by the corre- 
sponding singular vectors is preserved well when a small 
perturbation is added to A. 

Lemma 1 Let A be an n x m matriz of rank r with 
singular value decomposition 

A = UDVT, 
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where D =diag(cn,..., ut). Suppose that, for some k, 
1 5 h < r, U);/u):+:+1 > cul/uk for sufficiently large 
constant c. Let F be an arbitrary n x m matrix with 
llPllz 5 c, where E is a sufficiently small positive con- 
stant, Let A’ = A + F and let U’D’V’T be its aingular- 
value decomposition. Let Uk and l.$ be n x k matrices 
consisting of the first h columns of U and U’ reapec- 
tiuelv. Then, l$ = UkR+G for some k x k orthonormal 
matrix R and some n x k matrix G with 110112 2 O(c). 

The proof of this lemma, given in the appendix, re- 
lies on a theorem of Stewart [16] about perturbing a 
symmetric matrix. 

Let C = (U, T, D) be a corpus model. We call C 
pure if each document involves only a single topic. We 
call C c-separable, where 0 ,< E < 1, if a set of terms 
UT is associated with each topic T E 7 so that (1) 
UT arc mutually disjoint and (2) for each T, the total 
probability T assigns to the terms in UT is at least 1 -E. 
we call UT the primary set of terms of topic T. 

The assumption that a corpus model is style-free and 
pure is probably too strong and its elimination should be 
addressed in future investigations. On the other hand, 
the assumption that a corpus is c-separable for some 
small value of 6 may be reasonably realistic, since docu- 
ments are usually preprocessed to eliminate commonly- 
occurring stop-words. 

Let C be a pure corpus model and let L = 171 de- 
note the number of topics in C. Since C is pure, each 
document generated from C is in fact generated from 
some single topic T: we say that the document belongs 
to the topic T. Let C be a corpus generated from C 
and, for each document d E C, let Vd denote the vec- 
tor assigned to d by the rank-k LSI performed on C. 
We say that the rank-H LSI is C-skewed on the cor- 
pus instance C if, for each pair of documents d and d’, 
z)d’2)& < 611vdll[lV&ll if d and d’ belong to different topics 
and Tad a vd/ 2 1 - 6ll&3lll]vd,ll if they belong to the same 
topic. Informally, the rank-l LSI is &skewed on a corpus 
(for small 6), if it assigns nearly orthogonal vectors to 
two documents from different topics and nearly parallel 
vectors to two documents from a single topic: LSI does 
a particularly good job of classifying documents when 
applied to such a corpus. The following theorem states 
that a large enough corpus (specifically, when the num- 
ber of documents is greater than the number of terms) 
generated from our restricted corpus model indeed has 
this nice property with high probability. 

Theorem 2 Let C be a pure, c-separable corpus model 
with h topics such that the probability each topic assigns 
to each term is at most r, where r > 0 is a sufficiently 
small constant, Let C be a corpus of m documents gen- 
erated from C, Then, the rant-k LSI is O(c)-skewed on 
C with probability 1 - O(m-‘). 

Proof, Let Ci denote the subset of the generated 
corpus C consisting of documents belonging to topic Ti, 
1 ,< i < k. To see the main idea, let us first assume 

that E = 0. Then, each document of Ci consists only of 
terms in Ui, the primary set of terms associated with 
topic T<. Thus, the term-document matrix A represent- 
ing corpus C consists of blocks .&, 1 5 i 2 k: the 
rows of B; correspond to terms in U, and columns of 
Bi correspond to documents in Ci; the entire matrix 
A can have non-zero entries in these rows and columns 
only within Bi. Therefore, ATA is block-diagonal with 
blocks BTBi, 1 < i _< h. Now focus on a particu- 
lar block BTBi and let Xi and Xi denote the largest 
and the second largest eigenvalues of B’Bi. Intuitively, 
the matrix BTBi is essentially the adjacency matrix 
of a random bipartite multigraph and then, from the 
standard theory of spectra of graphs[S], we have that 
X:/Xi -+ 0 with probability 1 a~ r -+ 0 and IC,l -+ 00. 
Below we give a formal justification of this by showing 
that a quantity that captures this property, the con- 
ductance [20] (equivalently, expansion) of BTBi is high. 
The conductance of an undirected edge-weighted graph 
G=(V,E)is 

mm ‘. 
,~s,,p4~J3 

A min{lSl, ISI} 

Let X1,x2,... , x* be random documents picked from 
the topic Ti. Then we will show that the conductance is 
n(a), where lzl is the number of terms in the topic 
T<. Let G be the graph induced by the adjacency matrix 
BFB;. For any subset S of the vertices (documents), 

= (C x’) - (C 2’). 
ig.S 3s 

Assume w.l.0.g. that ISI 5 131. Let ps be the proba- 
bility of the ath term in Ti. Then we can estimate, for 
each term, &TX: 1 min{p,/2,p, - E) with probabil- 
ity at least 1 - Z$ using the independence of the x1’s via 
a simple application of Chernoff-Hoeffding bound [l?]. 
Using this we lower bound the weight of the cut (S,‘s>: 

i&S j8 iES 

which is Q(,!$) with high probability by a second ap- 
plication of the Chernoff-Hoeffding bound. The desired 
bound on the conductance follows from this. 

Thus, if the sample size m = ICI is sufficiently large, 
and the maximum term probability r is sufficiently small 
(note this implies that the size of the primary set of 
terms for each topic is sufficiently large), the JZ largest 
eigenvalues of ATA are Xi, 1 5 i 5 I;, with high prob- 
ability. Suppose now that our sample C indeed enjoys 

162 



this property, Let zii denote the eigenvector of B’Bi 
corresponding to eigenvalue Xi (in the space where co- 
ordinates are indexed bv the terms in T;\ and let zli be 
its extension to the full berm space, obtaiged by padding 
zero entries for terms not in Ti. Then, the k-dimensional 
LSI-space for corpus C is spanned by the mutually or- 
thO&Onid vectors Ui, 1 s i 5 I;. When a vector od 
representing a document d E Ci is projected into this 
space, the projection is a scalar multiple of ui, because 
~JUJ is orthogonal to Uj for every j # i. 

When E > 0, the term-document matrix A can be 
written as A = B + F, where B consists of blocks Bi as 
above and F is a matrix with small ]]L]]z-norm (not ex- 
ceeding c by much, with high probability). As observed 
in the above analysis for the case E = 0, the invari- 
ant subspace w~; of BTB corresponding to its largest 
h eigenvalues is an ideal representation space for repre- 
senting documents according to their topics. Our hope 
is that the small perturbation F does not prevent LSI 
from identifying WI; with small errors. 

This is where we apply Lemma 1. Let kVi denote 
the k-dimensional space the rank-l; LSI identifies. The 
c-separability of the corpus model implies that the two- 
norm of the perturbation to the document-term ma- 
trix is O(r) and, therefore by the lemma, the two-norm 
of the difference between the matrix representations of 
klfj; and Wi is O(L). Since WI is a small perturbation 
of WI;, pro ecting I’ a vector representing a document in 
Cl into WL. yields a vector close, in its direction, to a< 
(the dominating eigenvector of BFBi). Therefore, the 
LSI renresentations of two documents are almost in the 
same direction if they belong to the same topic and are 
nearly orthogonal if they belong to different topics. A 
quantitative analysis (Lemma 5) shows that the rank-l; 
LSI is indeed O(c)-skewed on C with high probability. 
0 

Even though Theorem 2 gives an asymptotic result and 
only claims that the probability approaches 1 as the 
size parameters grow, the phenomenon it indicates can 
be observed in corpora of modest sizes, as is seen in the 
following experiment. We generated 1000 documents 
(each 50 to 100 terms long) from a corpus model with 
2000 terms and 20 topics. Each topic is assigned a dii 
joint set of 100 terms as its primary set. The probability 
distribution for each topic is such that 0.95 of its prob- 
ability density is equally distributed among terms from 
the primary set, and the remaining 0.05 is equally dis- 
tributed among all the 2000 terms. Thus this corpus 
model is 0.05-separable. We measured the angle (not 
some function of the angle such as the cosine) between 
all pairs of documents in the original space and in the 
rank 20 LSI space. The following is a typical result; 
similar results are obtained from repeated trials. Call 
n pair of documents intro-topic if the two documents 
are generated from the same topic and inter-topic oth- 
erwise. 

intra-topic 

original space 0.3 
max average std 
1.39 1.09 0.079 

IS1 space 0 0.312 0.0177 0.0374 
mter-topic 

original space 1% YY 
average std 

1.57 0.00791 
LSI suace 0.101 1.57 1.55 0.153 

Here, angles are measured in radians. It can be seen 
that the angles of intra-topic pairs are dramatically re- 
duced in the LSI space. Although the minimum inter- 
topic angle is rather small, indicating that some inter- 
topic pairs can be close enough to be confused, the aver- 
age and the standard deviation show that such pairs are 
extremely rare. Results from experiments with different 
size-parameters are also similar in spirit. In this and the 
other experiments reported here, we used SVDPACKC 
[2] for singuIar value decomposition. 

We end this section with a brief discussion of synonymy 
in the context of LSI. Let us consider a simple model 
in which two terms have identical co-occurrences (this 
generalizes synonymy, as it also applies to pairs of terms 
such as supply-demand and war-peace). Furthermore, 
these two terms have each a small occurrence proba- 
bility. Then, in the term-term autocorrelation matrix 
AAT, the two rows and columns corresponding to these 
terms will be nearly identical. Therefore, there is a very 
small eigenvalue corresponding to this pair - presum- 
ably the smallest eigenvalue of AAT. The correspond- 
ing eigenvector will be a vector with 1 and -1 at these 
terms - that is to say, the dijference of these terms. 
Intuitively then, this version of LSI will “project out” a 
very weak eigenvector that corresponds to the presum- 
abIy insignificant semantic differences between the two 
synonymous terms. This is exactly what one would ex- 
pect from a method that claims to bring out the hidden 
semantics of the corpus. 

5 LSI by random projection 

A result by Johnson and Lindenstrauss [ll, 191 states 
that if points in a vector space are projected to a random 
subspace of suitably high dimension, then the distances 
between the points are approximately preserved. Al- 
though such a random projection can be used to reduce 
the dimension of the document space, it does not bring 
together semanticallv related documents. LSI on the . 
other hand seems to achieve the latter, but its compu- 
tation time is a bottleneck. This naturally suggests the 
following two-step approach: 

1. Apply a random projection to the initial corpus to 
I dimensions, for some small 1 > k, to obtain, with 
high probability, a much smaller representation, 
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which is still very close (in terms of distances and 
angles) to the original corpus. 

2, Apply rank O(k) LSI (because of the random pro- 
jection, the number of singular values kept may 
have to be increased a little). 

In this section we establish that the above approach 
works, in the sense that the final representation is very 
close to what, we would get by directly applying LSI. 
Another way to view this result is that random projec- 
tion gives us a fast way to approximate the eigenspace 
(eigenvalues, eigenvectors) of a matrix. 

We first state the Johnson-Lindenstrauss lemma. 

Lemma 2 r(Johnson and Lindenstrauss, see 111, 191.) 
Let v E R be a unit vector, let H be a random I- 
dimensional subspace through the origin, and let the ran- 
dom variable X denote the square of the length of the 
projection of v onto H. Suppose 0 < E < 3, and 
24106 n < I< fi. Then, E[X] = l/n, and 

Pr(lX - l/n1 > d/n) < 2&e’(‘-‘)c1’4. 

Using the above result, we can infer that with high 
probability, all pairwise Euclidean distances are approx- 
imately maintained under projection to a random sub- 
space, By choosing 1 to be Q(y) in Lemma 2, with 
high probability the projected vectors, after scaling by 
a factor &ji, {vi), satisfy 

Ilvi - V,ll2(1 - C) < 114 - 74112 I 11% - Vj[IZ(l+ E)- 

Similarly inner products are also preserved approximately: 
2Vi * VI 
satisfy 

= vp + vj” - (Vi - v,)?. So the projected vectors 

2Vi ‘Vi < (VT +VT)(l+ E) - (Vi -Vj)‘(l -t) 

Therefore, v~*v: 5 vi*vj(l-~)+c(v:+~,‘). In particular, 
if the vi’s are all of length at most 1, then any inner 
product vi - v, changes by at most 26. 

Consider again the term-document, matrix A gener- 
ated by our corpus model. Let R be a random column- 
orthonormal matrix with n rows and 1 columns, used 
to project A down to an l-dimensional space. Let B = 
In RTA be the matrix after random projection and 
scaling, where, 

iel i=l 

are the SVD’s of A and B respectively. 

Lemma 3 Let c be an arbitrary positive constant. If 
1 2 cw for a sufficiently large constant c then, for 
p=l,*..,~ 

.- 
r=l J=l 

The proof of this lemma is given in the appendix. 
As a corollary we have: 

Corollary 3 

p=l 

Now our rank 2t approximation to the original ma- 
trix as 

B2k = Acbib: 
i=l 

From thii we get. the main result of this section 
(whose proof also appears in the appendix): 

Theorem 4 

II-4 - BZJ& I IIA - Asll’F t W4ll3 

The measure IlA - Akll~ tells us how much of the 
original matrix is recovered by direct LSI. In other words, 
the theorem says that the matrix obtained by random 
projection followed by LSI (expanded to twice the rank) 
recovers almost as much as the matrix obtained by di- 
rect LSI. 

What are the computational savings achieved by the 
twvo-ster, method? Let A be an n x m matrix. The time 
to corn&e LSI is O(mnc) if A is sparse with about c 
non-zero entries per column (i.e., c is the average num- 
ber of terms in a document). The time needed to com- 
pute the random projection to 2 dimensions is O(mc1). 
After the projection, the time to compute LSI is O(m12). 
So the total time is O(ml(l+ c)). To obtain an E ap 
proximation we need 1 to be 0( 9). Thus the running 
time of the two-step method is asymptotically superior: 
O(m(log’ n + clog n)) compared to O(mnc). 

In [12], Frieze, Kannan and Vempala propose an al- 
ternative way to speed up LSI. They give fast algorithms 
for finding low rank approximations to an m x n ma- 
trix A. They compute an approximate Singular Value 
Decompositibn from a randomly chosen p& of sub- 
matrices of A. For anv eiven fi.e.6. their Monte Carlo 
algorithm finds the dekgption bfg katrix D of rank at 
most I; so that 

IIA - DIIF I IIA - AAIF + WIIF 

holds with probability at least 1 - 6. (llAll$ is the sum 
of squares of all the entries of the matrix, and Ak is 
the best rank t approximation with this measure.) The 
algorithm takes time polynomial in fi, l/c, log( l/6) only, 
i.e. independent of m, n. The matrix D can be explicitly 
constructed from its description in O(nmn) time. 
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6 Conclusion and further work 

Our corpus model is, from a practical standpoint, rather 
weak; what would it take to establish theorems for “more 
realistic” models? Our present work has relied on study- 
ing the spectra of the perturbations of block matrices; 
more generally, we require tools to study the eigenvec- 
tom of the linear superposition of several matrices (un- 
der some assumptions about the individual matrices). 
Alternatively, we may think of the spectral properties 
of random graphs with (a small set of) varying edge 
probabilities, This appears be the technical bottleneck 
to furthering our results. 

A theoretician’s first reaction to an unexpected (pos- 
itive or negative) empirical phenomenon is to under- 
stand it in terms of mathematical models and rigorously 
proved theorems; this is precisely what we have tried to 
do, with substantial if partial success. What we have 
been able to prove should be seen as a mere indication 
of what might hold; we expect the true positive proper- 
ties of LSI to go far beyond the theorems we are proving 
Jlcrc, 

There are several specific technical issues to be pur- 
sued, Can Theorem 2 be extended to a model where 
documents could belong to several topics, or to one 
whcrc term occurrences are not independent? Also, 
does LSI address polysemy as spectral techniques of 
slightly different kind to, see \ IS])? We have seen some 
evidence that it does handle synonymy. 

Theory should ideally go beyond the ez post facto 
justification of methods and explanation of positive phe- 
nomcna, it should point the way to new ways of ex- 
ploiting them and improving them. Section 5, in which 
we propose a random projection technique as a way of 
speeding up LSI (and possibly as an alternative to it), 
is an attempt in this direction. 

Another important role of theory is to unify and 
generalize, Spectral techniques are not confined to the 
vector-apace model, neither to the strict context of in- 
formation retrievah Furthermore, spectral analysis of 
a similar graph-theoretic model of the world-wide web 
has been shown experimentally to succeed in identifying 
topics and to substantially increase precision and recall 
in web searches [18], as well as in databases of law deci- 
sions, service logs and patents [4]. Finally, it is becom- 
ing clear that spectral techniques and their theoretical 
analysis may prove to be key methodologies in many 
other domains of current interest, such as data mining 
(using spectral techniques to discover correlations in re- 
lational databases [14]) and collaborative filtering (per- 
sonalizing subscriber preferences and interests) [4]. The 
rows and columns of A could in general be, mstead of 
terms and documents, consumers and products, viewers 
and movies, or components and systems. 

We conclude this section with a brief description of 
a promising alternative, graph-theoretic, corpus model. 
Suppose that documents are nodes in a graph, and weights 
on the edges capture conceptual proximity of two doc- 
uments (for example, this distance matrix could be de- 

rived from, or in fact coincide with, AAT). Then a topic 
is defined implicitly as a subgraph with high conduc- 
tance [ZO], a concept of connectivity which seems very 
appropriate in this context. We can prove that, under 
an assumption similar to c-separability, spectral analy- 
sis of the graph can identify the topics in thii model as 
well (proof omitted from this abstract): 

Theorem 5 If the corpus consists of k disjoint sub- 
graphs with high conductance, and joined with edges with 
total weight bounded from above by an E fraction of the 
distance matrix, then rank-k LSI will discover the sub- 
graphs. 
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7 Appendix: Proofs of Lemmas 

In the following version of Lemma 1, we take some spe- 
cific values for some constants to facilitate the proof. 

Lemma 4 Let A be an n x m matriz of rank r with 
singular value decomposition 

A = UDVT, 

where D = diag(ul,. . ., or). Suppose that, for some 
k, 1 < k < r, 21120 > UI 2 . . . 2 Uk > 10/20 and 
1/20 2 Uk+l 2 . . . 2 Ur. Let F be an arb:trary n x m 
matrix with llFj[o 5 E 5 l/20. Let A’ = A f F and 
let lJ’D’Vfl be its singular-value decomposition. Let Uk 
and UL be nx k matrices consisting of the first k columns 
of U and U’ respectively. Then, l$ = UkR+G for some 
k x k orthonormal matrix R and some n x k matrix G 
urith llG112 _< 9c. 

The proof of this lemma relies on a theorem of Stew- 
art [16] about perturbing a symmetric matrix. 

Theorem 6 Suppose B and B+E are n x n symmetric 
matrices and 

Q = [ $I Q2 1 
n-k 

is an n x n orthogonal matrix such that range(Q1) is an 
invariant subspace for B. Partition the matrices QTBQ 
and QTEQ as follows, where B11 and El1 are k x A 
matrices: 

QTBQ = [ ';I i2 ] 
QTEQ= [ 2; z;] 

6 = Xmin - f.hot -II&1112 - llE22112 > 0, 

where Xmin is the smallest eigenvalue of B11 and nrncll 
is the largest eigenualue of Bzz, and llE12112 < b/2 then 
there exists an (n -k) x k real matrix P such that 

lPll2 5 3Ezl II2 

and the columns of Qi = (Ql+Q2P)(I+PTP)-‘12 form 
an orthonormal basis for a subspace that is invariantfor 
B+E. 

Proof of Lemma 4. We apply Theorem 6 to B = 
AAT, E = A’(A’)T-B. W e c h oose the block-diagonalizing 
matnx Q in the theorem to be U followed by n-r zero- 
columns. Thus, when we write Q = [Qr Qs], Qr = Uk, 
the first k columns of U, and Qs consists of remaining 
columns of U followed by zero-columns. Since UTBU is 
a diagonal matrix, QTBQ is also a diagonal matrix. Let 
QTEQ be decomposed into blocks Ei;, 1 5 i, j < 2, as 
in Theorem 6. To anolv the theorem. we need to-bound 
IIEi,~ll2. We do t&*&ply by bounding llEll2. Since 
E = (A+F)(A+ F)T -AAT = AFT+FATSFFT, we 
have lIElIz 5 2IIA~~2llFllz + llFl12’ I 2(21/2O)c + c2 < 
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(43/20)~. Therefore, llEij112 5 (43/20)~, 1 5 i,j < 
2. The non-zero eigenvalues of B are uz, . . . , a:. Of 
these, u:, I I, , u; 2 361/400 and u:+~, . . . , a: < l/400. 
Hence 6 = Xmin - P,,,~, - I El1 11~ - III3221 2-k posi- 
tive: 6 > 361/400 - l/400 - (’ 43/10 

I 
E 2 137 I 200. Also 

we have ~~E~:,,~~~ 5 (43/20)e 5 43 400 < 6/2 and aU 
the assumptions of Theorem 6 are satisfied. It follows 
that there exists an ((n - k) X b matrix P satisfying 
lIPlIz ,< $@321))2 15 7c such that 

Qi = (Ql + Q2P)(I -!- PTP)-” (1) 

forms an orthonormal basis for a subspace that is in- 
variant for B + E. Thii invariant subspace corresponds 
to the I; largest singular values of A + F. Therefore, the 
column vectors of Ui, (the first k eigenvectors of B+E) 
span the same invariant subspace as that spanned by the 
column vectors of Q:. In other words, there is a I; x I; 
orthonormal matrix R such that Vi = Q;R. 

Since llQ1112 I 1, llQ1112 I 1, and 
I(P 12 I; 7c, it follows from (1) that Qi = Q1 +-H for 

some 1 f wrth llHl/s 5 Qc. Therefore, Uk = UI;R + HR, 
with jlffRll2 < 9c, as claimed. I 

The following lemma is also used in the proof of The- 
orem 2, 

Lemma G Let II E RnXk be a motrk with orthonormal 
columns and let W E R”‘” be a matriz with llW_ U&r 5 

p-1 

&$RI’ - c X,‘(b> . vi)2 
j=1 

P--l 

2 (1 - c)u: - c X;(b, . vJ2 
JZ1 

Summing thisupfori=l,...,k, 

5 VTBTBVi 1 (1 - E) 2 Uf - E A,’ L(bl * 0~)~ 

iA i-1 ~=l i-1 

Since the V;‘S are orthogonal and the b,‘s are unit vec- 
tors, 

Hence 

p--l 

Xi > 771tlZv,VTBTBVi > i[(l - E) 2 UT - CA,‘] 

a=1 J=l 

I 

6, Let ~L,v, w E R” be vectors such that IIUTujj2 = 
jlCJTvl12 = /JUTwJ12 = 1, (IITq UTu) = 1 and (UTq UTw) = proof Of Theorem 4* we have 
0. Let u’, v , w’ E R” be arbitrary vectors with 

Then, 

lb - 412, Ilv - 4l2, IIW - w’l(2 5 E. 

A=&oiuiV’, Ak=kUi?kVT 
iA 1=1 

(W*U’, WTV’) 1 (1 - 4~)llwTu’llzllwT~‘l12, and 

(WTU’, WTW’) 5 4r. 

Proof of Lemma 3: The pth eigenvalue of I3 can be 
written as 

J=l I=1 

Consider the above expression for ~1,. . . , Vk, the first 
b cigcnvectors of A. For the ith eigenvector vi it can be 
reduced to 

And 

B = 2 XiaibT, B2k = AFbibT 
id i-1 

Since bl,..., b, are an orthonormal set of vectors, 

IlA-Bzkll:=~l(A-B2*)bi12 
i=l 

But,fori=l,..., %, 

(A - Bzk)bi = Abi - Abi = 0 

And for i=2k+l,...,n 

(A - B2k)bi = Abi 

Hence, 

IIA - B& = 2 IA&I’ = 2 lAb,12 - 5 IAb,I’ 
i=2k+l iel i-1 
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i=l 

On the other hand, 

llA - A/;II$ = 2 u; = IlAll’F - llA& 
irk+1 

Hcncc 

((A - &,;(I; - IlA - A,:lls = llA/cll$ - cIAh12 
i=l 

That is, 

IlA-Bzkll%=IIA-AkIIS+(IIAkllb-~IAbi12) 

i=l 

Next, WC will show that 

(1 + C) g IAbiI’ 2 5 XT 
i=l i=l 

we have 

2k 

c 
i=l i=l 

= 2 I@(Abi)l’ 
i=l 

NOW from lemma 2 we have that for 1 large enough, i.e., 
1 = n(v), with high probability, 

(1 - c)lAbi12 5 FlRT(Abi)12 5 (1-F C)IAbi12 

for each i. Therefore with high probability, 

5 Xf 5 (1 + E) 2 IAbi12 
is1 i=l 

l?rom corollary 3 

5 I’m: >, (1 - ~)llAkll” 

2 (144llA& 

Substituting this above, we have, 

IlA - B2k11$ 5 IIA - Akll% t 2~11Akll’F 

Hence 

IlA - BZkll$ I llA- A& t2Wll’F 
I 
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