
Building Low-Diameter P2P Networks

Gopal Pandurangan� Prabhakar Raghavany Eli Upfal�

Abstract

In a peer-to-peer (P2P) network, nodes connect into an
existing network and participate in providing and avail-
ing of services. There is no dichotomy between a central
server and distributed clients. Current P2P networks (e.g.,
Gnutella) are constructed by participants following their
own un-coordinated (and often whimsical) protocols; they
consequently suffer from frequent network overload and
fragmentation into disconnected pieces separated by choke-
points with inadequate bandwidth.

In this paper we propose a simple scheme for partici-
pants to build P2P networks in a distributed fashion, and
prove that it results in connected networks of constant de-
gree and logarithmic diameter. It does so with no global
knowledge of all the nodes in the network. In the most com-
mon P2P application to date (search), these properties are
important.

1. Overview

Peer-to-peer (or “P2P”) networks are emerging as a
significant vehicle for providing distributed services (e.g.,
search, content integration and administration) both on the
Internet [4, 5, 6, 7] and in enterprises. The idea is simple:
rather than have a centralized service (say, for search), each
node in a distributed network maintains its own index and
search service. Queries no longer go to a central server; in-
stead they fan out over the network, and results are collected
and propagated back to the originating node. This allows
for search results that are fresh (in the extreme, admitting
dynamic content assembled from a transaction database, re-
flecting – say in a marketplace – real-time pricing and in-
ventory information). Such freshness is not possible with
traditional static indices, where the indexed content is as

�Computer Science Department, Brown Univer-
sity, Box 1910, Providence, RI 02912-1910, USA.
E-mail: fgopal, eli g@cs.brown.edu . Supported in part by
the Air Force and the Defense Advanced Research Projects Agency of the
Department of Defense under grant No. F30602-00-2-0599, and by NSF
grant CCR-9731477.

yVerity Inc., 892 Ross Drive, Sunnyvale, CA 94089.

old as the last crawl (in many enterprises, this can be several
weeks). The downside, of course, is dramatically increased
network traffic. In some implementations [5] this problem
can be mitigated by adaptive distributed caching for repli-
cating content; it seems inevitable that such caching will
become more widespread.

How should the topology of P2P networks be con-
structed? Each node participating in a P2P network runs
so-calledserventsoftware (forserver+client, since every
node is both a server and a client). This software embeds
local heuristics by which the node decides, on joining the
network, which neighbors to connect to. Note that an in-
coming node (or for that matter, any node in the network)
does not have global knowledge of the current topology, or
even the identities (IP addresses) of other nodes in the cur-
rent network. Thus one cannot require an incoming node to
connect (say) to “four random network nodes” (in the hope
of creating an expander). What local heuristics will lead to
the formation of networks that perform well? Indeed, what
properties should the network have in order for performance
to be good? In the Gnutella world [7] there is little consen-
sus on this topic, as the variety of servent implementations
(each with its own peculiar connection heuristics) grows –
along with little understanding of the evolution of the net-
work. Indeed, some services on the Internet [8] attempt to
bring order to this chaotic evolution of P2P networks, but
without necessarily using rigorous approaches (or tangible
success).

A number of attempts are under way to create P2P net-
works within enterprises (e.g., Verity is creating a P2P en-
terprise infrastructure for search). The principal advantage
here is that servents can be implemented to a standard, so
that their local behavior results in good global properties
for the P2P network they create. In this paper we begin with
some desiderata for such good global properties, principally
the diameter of the resulting network (the motivation for this
becomes clear below). Our main contribution is a stochas-
tic analysis of a simple local heuristic which, if followed by
every servent, results in provably strong guarantees on net-
work diameter and other properties. Our heuristic is intu-
itive and practical enough that it could be used in enterprise
P2P products.

1.1. Case study: Gnutella

To better understand the setting, modeling and objec-
tives for the stochastic analysis to follow, we now give an
overview of the Gnutella network. This is a public P2P net-
work on the Internet, by which anyone can share, search for
and retrieve files and content. A participant first downloads
one of the available (free) implementations of the search
servent. The participant may choose to make some docu-
ments (say, all his FOCS papers) available for public shar-
ing, and indexes the contents of these documents and runs
a search server on the index. His servent joins the network
by connecting to a small number (typically 3-5) of neigh-
bors currently connected to the network. When any ser-
vents wishes to search the network with some queryq, it
sendsq to its neighbors. These neighbors return any of their
own documents that match the query; they also propagateq
to their neighbors, and so on. To control network traffic
this fanning-out typically continues to some fixed radius (in
Gnutella, typically 7); matching results are fanned back into
s along the paths on whichq flowed outwards. Thus every
node can initiate, propagate and serve query results; clearly
it is important that the content being searched for be within
the search radius ofs. A servent typically stays connected
for some time, then drops out of the network – many par-
ticipating machines are personal computers on dialup con-
nections. The importance of maintaining connectivity and
small network diameter has been demonstrated in a recent
performance study of the public Gnutella network [8].

Note that the above discussion lacks any mention of
which 3-5 neighbors a servent joining the network should
connect to; and indeed, this is the current free-for-all sit-
uation in which each servent implementation uses its own
heuristic. Most begin my connecting to a generic set of
neighbors that come with the download, then switch (in
subsequent sessions) to a subset of the nodes whose names
the servent encountered on a previous session (in the course
of remaining connected and propagating queries, a servent
gets to “watch” the names of other hosts that may be con-
nected and initiating or servicing queries). Note also that
there is no standard on what a node should do if its neigh-
bors drop out of the network (many nodes join through di-
alup connections, and typically dial out after a few minutes
– so the set of participants keeps changing).

1.2. Guided tour of the paper

Our main contribution is a new protocol by which newly
arriving servents decide which network nodes to connect
to, and existing servents decide when and how to replace
lost connections. We show that our protocol results in a
constant degree network that is likely to stay connected and
have small diameter.

Our protocol for building a P2P network is summarized
in Section 2. Sections 3 and 4 present a stochastic analysis
of our protocol. Our protocol involves one somewhat non-
intuitive notion, by which nodes maintain “preferred con-
nections” to other nodes; in Section 5 we show that this fea-
ture is essential. Our analysis considers a stochastic setting
in which nodes arrive and leave the network according to
a probabilistic model. Our goal is to show that even as the
network changes with these arrivals/departures, it remains
connected with small diameter.

The technical core of our analysis is an analysis of an
evolving graph as nodes arrive and leave, with edges being
dictated by the protocol; the analysis of evolving graphs is
relatively new, with virtually no prior analysis in which both
nodes and edges arrive and leave the network.

2. The Network Protocol

The central element of our protocol is ahost server
which, at all times, maintains acacheof K nodes, where
K is a constant. The host server is reachable by all nodes at
all times; however, it need not know of the topology of the
network at any time, or even the identities of all nodes cur-
rently on the network. We only expect that (1) when the host
server is contacted on its IP address it responds, and (2) any
node on the P2P network can send messages to its neigh-
bors. In this sense, our protocol demands far less from the
network than do (for instance) current P2P proposals (e.g.,
the reflectorsof dss.clip2.com, which maintain knowledge
of the global topology).

When a node is in the cache we refer to it as acache
node. A node isnewwhen it joins the network, otherwise
is is old. Our protocol will ensure that the degree (number
of neighbors) of all nodes will be in the interval[D;C +1],
for two constantsD andC.

A new node first contacts the host server, which gives it
D random nodes from the current cache to connect to. The
new node connects to these, and becomes ad-node; it re-
mains a d-node until it subsequently either enters the cache
or leaves the network. The degree of a d-node is always
D. At some point the protocol may put a d-node into the
cache. It stays in the cache until it acquires a total ofC con-
nections, at which point it leaves the cache, as ac-node. A
c-node might lose connections after it leaves the cache, but
its degree is always at leastD. A c-node has always one
preferredconnection, made precise below. Our protocol is
summarized below as a set of rules applicable to various
situations that a node may find itself in.

Peer-to-Peer Protocol for Nodev:

1. On joining the network: Connect toD cache nodes,
chosen uniformly at random from the current cache.

2

2. Reconnect rule:If a neighbor ofv leaves the network,
and that connection was not a preferred connection,
connect to a random node in cache with probability
D=d(v), whered(v) is the degree ofv before losing
the neighbor.

3. Cache Replacement rule:Whenv reaches degreeC
in the cache, it is replaced in the cache by a d-node
from the network. Letr0(v) = v, and letrk(v) be the
node replaced byrk�1(v) in the cache. The replace-
ment d-node is found by the following rule:

k = 0;
while (a d-node is not found)do

search neighbors ofrk(v) for a d-node;
k = k + 1;

endwhile

4. Preferred Node rule: Whenv leaves the cache as a
c-node it maintains apreferred connectionto the d-
node that replaced it in the cache. (Ifv is not already
connected to that node this adds another connection to
v.)

5. Preferred Reconnect rule:If v is ac-node and its pre-
ferred connection is lost, thenv reconnects to a random
node in the cache and this becomes its new preferred
connection.

We end this section with brief remarks on the protocol and
its implementation.

1. In the stochastic analysis that follows, the protocol
does have a minuscule probability of catastrophic fail-
ure: for instance, in the cache replacement step, there
is a very small probability that no replacement d-node
is found. A practical implementation of this step would
either cause some nodes to exceed the maximum ca-
pacity ofC + 1 connections, or to reject new connec-
tions. In either case, the system would speedily “self-
correct” itself out of this situation (failing to do so with
an even more minuscule probability). For either such
implementation choice, our analysis can be extended.

2. Note that the overhead in implementing each rule of
the protocol is constant (or expected constant). Rules
1, 2, 4 and 5 can be easily implemented with constant
overhead. It follows from our analysis that the over-
head incurred in replacing a full cache node (rule 3)
is constant on the average, and with high probability
is at most logarithmic in the size of the network (see
Section 3.2).

3. The cache replacement rule can be implemented in a
distributed fashion by a local message passing scheme
with constant storage per node. Each c-nodev stores

the address of the node that replaced it in the cache,
i.e., r(v). Nodev sends a message tor(v) when v
itself doesn’t have any d-node neighbors.

4. We have not stated how a node determines whether a
neighbor is down. In practice, each node can period-
ically ping its neighbors to check whether any of its
neighbors have gone offline.

3. Analysis

In evaluating the performance of our protocol we focus
on the long term behavior of the system in a fully decen-
tralized environment in which nodes arrive and depart in an
uncoordinated, and unpredictable fashion. This setting is
best modeled by a stochastic, memoryless, continuous-time
setting. The arrival of new nodes is modeled by Poisson
distribution with rate�, and the duration of time a node
stays connected to the network has an exponential distribu-
tion with parameter�. LetGt be the network at timet (G0

has no vertices). We analyze the evolution in time of the
stochastic processG = (Gt)t�0.

Since the evolution ofG depends only on the ratio�=�
we can assume w.l.o.g. that� = 1. To demonstrate the
relation between these parameters and the network size, we
useN = �=� throughout the analysis. We justify this no-
tation in the next section by showing that the number of
nodes in the network rapidly converges toN . Furthermore,
if the ratio between arrival and departure rates is changed
later toN 0 = �0=�0, the network size will then rapidly con-
verge to the new valueN 0. Next we show that the protocol
can w.h.p.1 maintain a bounded number of neighbors for all
nodes in the network, i.e., w.h.p. there is a d-node in the
network to replace a cache node that reaches full capacity.
In Section 3.3 we analyze the connectivity of the network,
and in Section 4 we bound the network diameter.

3.1. Network Size

LetGt = (Vt; Et) be the network at timet.

Theorem 3.1 1. For any t =
(N), w.h.p. jVtj =
�(N).

2. If t
N !1 then w.h.p.jVtj = N + o(N).

Proof: Consider a node that arrived at time� � t. The
probability that the node is still in the network at timet is
e�(t��)=N . Let p(t) be the probability that a random node
that arrives during the interval[0; t] is still in the network at

1Throughout this extended abstract w.h.p. denotes probability1 �
N
�
(1).

3

time t, then (since in a Poisson process the arrival time of a
random element is uniform in[0; t]),

p(t) =
1

t

Z t

0

e�(t��)=Nd� =
1

t
N(1� e�t=N):

Our process is similar to an infinite server Poisson queue.
Thus, the number of nodes in the graph at timet has a Pois-
son distribution with expectationtp(t) (see [10],pages 18–
19).

For t =
(N), E[jVtj] = �(N). Whent=N ! 1,
E[jVtj] = N + o(N).

We can now use a tail bound for the Poisson distribu-
tion [1] [page 239] to show that fort =
(N),

Pr
�
jjVtj �E[jVtj]j �

p
bN logN

�
� 1� 1=N c

for somec > 1. 2

The above theorem assumed that the ratioN = �=� was
fixed during the interval[0; t]. We can derive similar result
for the case in which the ratio changes toN 0 = �0=�0 at
time � .

Theorem 3.2 Suppose that the ratio between arrival and
departure rates in the network changed at time� from N
to N 0. Suppose that there wereM nodes in the network at
time� , then if t��N 0

!1 w.h.p.Gt hasN 0 + o(N 0) nodes.

Proof: The expected number of nodes in the network at
time t is

Me�
(t��)

N0 +N 0(1� e�
t��

N0) = N 0 + (M �N 0)e�
t��

N0 :

Applying the tail bound for the Poisson distribution we
prove that w.h.p. the number of nodes inGt isN 0+ o(N 0).
2

3.2. Available Node Capacity

To show that the network can maintain a bounded num-
ber of connections at each node we will show that w.h.p
there is always a d-node in the network to replace a cache
node that reaches capacityC, and that the replacement node
can be found efficiently. We first show that at any given time
t the network has w.h.p. a large number of d-nodes.

Lemma 3.1 Let C > 2D; then at any timet � a logN ,
(for some fixed constanta > 0), w.h.p. there are

(1� 2D

C �D
)min[t;N]

d-nodes in the network.

Proof: Assume thatt � N (the proof fort < N is simi-
lar). Consider the interval[t�N; t]; we bound the number
of new d-nodes arriving during this interval and the number
of nodes that become c-nodes.

The arrival of new nodes to the network is Poisson-
distributed with rate 1; using the tail bound for the Poisson
distribution we show that w.h.p the number of new d-nodes
arriving during this interval isN(1 + o(1)), and that the
number of connections to cache nodes from the new arrivals
isDN(1 + o(1)).

W.h.p. there were never more thanN(1 + o(1)) nodes
in the network at any time in this interval. Thus, the num-
ber of nodes leaving the network in this interval is Poisson-
distributed with expectation� N(1 + o(1)) and w.h.p. no
more thanN(1 + o(1)) nodes left the network in the inter-
val. The expected number of connections to the cache from
old nodes is bounded by

N(1 + o(1))
X
v2V

d(v)

N

D

d(v)
= ND(1 + o(1)):

Let u1; :::; u` be the set of nodes that left the network in
that interval, and letXv;ui = 1 if v makes connection to the
cache whenui left the network, elseXv;ui = 0. Then

E

2
4X̀
j=1

X
v

Xv;ui

3
5 = ND(1 + o(1))

and each variable in the sum is independent of all butC
other variables. By partitioning the sum intoC sums such
that in each sum all variables are independent, and apply-
ing the Chernoff bound ([9]) to each sum individually, we
can show that w.h.p. the total number of connections to the
cache from old nodes during this interval is bounded w.h.p
byND(1 + o(1)):

Since a node receivesC � D connections while in the
cache, w.h.p. no more than2DC�DN d-nodes convert to new
c-nodes in the interval; thus w.h.p we are left with(1 �
2D
C�D)N d-nodes that joined the network in this interval.
2

Lemma 3.2 Suppose that the cache is occupied at timet
by nodev. LetZ(v) be the set of nodes that occupied the
cache during the interval[t�c logN; t]. For anyÆ > 0 and
sufficiently large constantc, w.h.p. jZ(v)j is in the range

2Dc
(C�D)K logN(1� Æ)

Proof: As in the proof of Lemma 3.1, the expected num-
ber of connections to a given cache node in an interval
[t� c logN; t] is 2Dc logN

K . Applying a Chernoff bound we
show that w.h.p. the number of connection is in the range
2Dc
K logN(1� Æ). Since a cache node receivesC �D con-

nections while in the cache the result follows.2

4

The following lemma shows with that in most cases the
algorithm finds a replacement node for the cache by search-
ing only a fewO(logN) nodes.

Lemma 3.3 Assume thatC � D > 2. At any timet �
c logN , with probability1�O(log

2 N
N) the algorithm finds

a replacement d-node by examining onlyO(logN) nodes.

Proof: Let v1; :::; vK be theK nodes in the cache at time
t. With probability

Ke�
c log2 N

N � 1�O(
log2N

N
)

no node inZ(vi), i = 1; ::;K leaves the network in the
interval[t� c logN; t].

Suppose that nodev leaves the cache at timet, then the
protocol tries to replacev by a d-node neighbor of a node in
Z(v). As in the proof of Lemma 3.1 w.h.p.Z(v) received at
least2DK c logN connections from new d-nodes in the inter-
val [t� c logN; t]. Among these new d-nodes no more than
jZ(v)j nodes enter the cache and became c-nodes during
this interval. Using the bound onjZ(v)j from Lemma 3.2,
w.h.p. there is ad-node attached to a node ofZ(v) at time
t. 2

3.3. Connectivity

The proof that at any given time the network is connected
w.h.p. is based on two properties of the protocol: (1) Steps
3-4 of the protocol guarantee (deterministically) that at any
given time a node is connected through “preferred connec-
tions” to a cache node; (2) The random choices of new con-
nections guarantee that w.h.p. theO(logN) neighborhoods
of any two cache nodes are connected to each other. In Sec-
tion 5 we show that the first component is essential for con-
nectivity. Without it, there is a constant probability that the
graph has a number of small disconnected components.

Lemma 3.4 At all times, each node in the network is con-
nected to some cache node directly or through a path in the
network.

Proof: It suffices to prove the claim for c-nodes since a
d-node is always connected to some c-node. A c-nodev is
either in the cache, or it is connected through its preferred
connection to a node that was in the cache afterv left the
cache. By induction, the path of preferred connections must
lead to a node that is currently in the cache.2

Lemma 3.5 Consider two cache nodesv andu at timet �
c logN , for some fixed constantc > 0. With probability1�
O(log

2 N
N) there is a path in the network at timet connecting

v andu.

Proof: Let Z(v) be the set of nodes that occupied the
cache during the interval[t � c logN; t]. By Lemma 3.2,
w.h.p. jZ(v)j = d logN , for some constantd.

The probability that no node inZ(v) leaves the network
during the interval[t� c logN; t] is

e�
cd log2 N

N � 1� O(
log2N

N
):

Note that if no node inZ(v) leaves the network during this
interval then all nodes inZ(v) are connected tov by their
chain of preferred connections.

The probability that no new node that arrives during the
interval [t � c logN; t] connects to bothc(v) and c(u) is
bounded by(1�D2=K2)c logN = O(1=Nc0). 2

Since there areK = O(1) cache locations we prove:

Theorem 3.3 There is a constantc such that at any given
timet > c logN ,

Pr(Gt is connected) � 1�O(
log2N

N
):

The above theorem does not depend on the state of the
network at timet � c logN . It therefore shows that the
network rapidly recovers from fragmentation.

Corollary 3.1 There is a constantc such that if the network
is disconnected at timet,

Pr(Gt+c logN is connected) � 1�O(
log2N

N
):

Theorem 3.4 At any given timet such thatt=N ! 1, if
the graph is not connected then it has a connected compo-
nent of sizeN(1� o(1)).

Proof: By Lemma 3.4 all nodes in the network are con-
nected to some cache node. TheO(log

2 N
N) failure probabil-

ity in Theorem 3.3 is the probability that some cache node is
left with fewer thand logN nodes connected to it. Exclud-
ing such cache nodes all other cache nodes are connected to
each either with probability1 �K2(1�D2=K2)c logN =
1� 1=Nc, for somec > 0. 2

4. Diameter

Theorem 4.1 For any t, such thatt=N ! 1, w.h.p. the
largest connected component ofGt has diameterO(logN).
In particular, if the network is connected (which has proba-
bility 1�O(log

2 N
N)) then w.h.p. its diameter isO(logN).

We give a sketch of the proof, emphasizing the important
steps. Since a d-node is always connected to a c-node it is

5

sufficient to discuss the distance between c-nodes. Thus, in
the following discussion all nodes are c-nodes. For the pur-
poses of the proof we fix a constantf , and color the edges
using three colors:A, B1 andB2. All edges are colored A
except: When a cache node leaves the cache, if during its
time in the cache it receives a set ofr � f connections such
that

� Ther connections are from old nodes.

� Ther connections are not preferred connections.

� Ther connections resulted fromr different nodes leav-
ing the network.

A randomf of theser connections are re-colored; a random
half of these toB1, the rest toB2.

It is easy to verify, following the proof of Theorem 3.3,
that at any timet, the network is connected with probabil-
ity 1 � O(log

2N
N) using only theA edges, and that if the

network is not connected then w.h.p. theA edges define a
connected component of sizeN(1� o(1)).

We rely on the “random” structure of theB edges to re-
duce the diameter of the network. However, we need to
overcome two technical difficulties. First, although theB
edges are “random”, the occurrences of edges between pairs
of nodes are not independent as in the standardGn;p model
of random graphs ([3]). Second, the total number ofB
edges is relatively small; thus the proof needs to use both
theA and theB edges.

Lemma 4.1 Assume that nodev enters the cache at time
t, wheret=N ! 1. For a sufficiently large choice of the
constantC, the probability thatv leaves the cache withf re-
colored edges is at least
 > 1=2, and thef connections are
distributed uniformly at random among the nodes currently
in the network. Furthermore, these events are independent
for different c-nodes.

Proof: Consider the interval of time in whichv was a
cache node. New nodes join the network according to a
Poisson process with rate 1. The expected number of con-
nections tov from a new node isD=K.

Since there areN(1+ o(1)) nodes in the network at that
time, and nodes leave the network according to a Poisson
process with rate 1, the expected number of connections to
v as a result of a old node leaving the network is

X
u2V

d(u)

N

D

d(u)

1

K
=

D

K
(1 + o(1)) < 1:

Thus, each connection tov, while it is in the cache, has a
constant probability each of being from a new or a old node.
Also, when a old nodeu leaves the network, the expected
number of connections tov fromu is d(u)

N
D
d(u) = D=N , i.e.,

all old nodes have equal probabilities of being connected to
v.

Since the expected number of connections tov as a result
of one old node leaving the network is� 1, for sufficiently
largeC, theC�D connections tov include, with probabil-
ity
 > 1=2, r � f connections that satisfy the requirement
for B edges. 2

Given a nodev in Gt, let�0(v) be an arbitrary cluster of
d logN c-nodes, such thatv 2 �0(v), and this cluster has
diameterO(logN) using onlyA edges.

For i � 1, i odd (resp., even) let�i(v) be all the c-
nodes inGt that are connected to�i�1(v) and are not in
[i�1
j=0�j(v) usingB1 (resp.,B2) edges.

Lemma 4.2 If j�i�1(v)j = o(N), then with probability1�
1=N5

j�i(v)j � 2j�i�1(v)j:
Proof: Let W = �i�1(v), w = jW j, and let z 62
W [([i�1

j=0�j(v)). W.l.o.g. assume thati� 1 is even. Par-
tition W into W0, consisting of nodes inW that are older
thanz, andW1, consisting of nodes inW that arrived af-
ter z. The probability thatz is connected toW0 usingB1

edges is14
f jW0j
N (1� o(1)). Similarly, each node inW1 has

probability f
4N (1 � o(1)) of being connected toz by B1

edges. Thus, the probability thatz is connected toW is at
least12

fw
N (1� o(1)).

Let Y = j�i(v)j be the number of c-nodes outsideW
that are connected toW by B1 edges.E[Y] = f

4w(1 �
o(1)). Let w1; w2; :::: be an enumeration of the nodes in
W , and letN(wi) be the set of neighbors ofwi outsideW
usingB1 edges. Define an exposure martingaleZ0; Z1; ::::,
such thatZ0 = E[Y], Zi = E[Y j N(w1); ::::; N(wi)],
Zw = Y . Since the degree of all nodes is bounded byC, a
nodewi can connect to no more thanC nodes outsideW .
Thus,jZi � Zi�1j < C.

Using Azuma’s inequality [2] we prove that for suffi-
ciently large constantd,

PfjY �E[Y]j � f

8

p
w

C
C
p
wg � 2e�

f2

128C2 w � 1=N5:

2

To complete the proof of the theorem, consider two
nodesv andu. By applying the above lemmaO(logN)
times we prove that with probability1�O(logNN5), for some
kv ; ku = O(logN), j�kv (v)j �

p
N logN andj�ku(u)j �p

N logN . The probability that�kv (v) and �ku(u) are
disjoint and not connected by an edge is bounded by(1 �
f=2N)N log2N , thus with probability1�O(logNN5) an arbi-
trary pair of nodesu andv are connected by a path of length
O(logN) in Gt. Summing the failure probability over all�
n
2

�
pairs we prove that w.h.p. any pair of nodes inGt is

connected by a path of lengthO(logN).

6

5. Why Preferred Connections?

In this section we show that the preferred connection
component in our protocol is essential: running the pro-
tocol without it leads to the formation of many small dis-
connected components. A similar argument would work for
other fully decentralized protocols that maintain a minimum
and maximum node degree and treat all edges equally, i.e.,
do not have preferred connections. Observe that a protocol
cannot replace all the lost connections of nodes with degree
higher than the minimum degree. Indeed, if all lost connec-
tions are replaced and new nodes add new connections, then
the total number of connections in the network is monoton-
ically increasing while the number of nodes is stable, thus
the network cannot maintain a maximum degree bound.

To analyze our protocol without preferred nodes define a
typeH subgraph as a complete bipartite network between
D d-nodes andD c-nodes, as shown in Figure 1.

Lemma 5.1 At any timet � c, wherec is a sufficiently
large fixed constant, there is a constant probability (i.e. in-
dependent ofN) that there exists a subgraph of typeH in
Gt.

Proof: A subgraph of typeH arises whenD incoming
d-nodes choose the same set ofD nodes in cache. A type
H subgraph is present in the network at timet when all the
following four events happen:

1. There is a setS of D nodes in the cache each having
degreeD (i.e., these are the new nodes in the cache
and are yet to accept connections) at timet�D.

2. There are no deletions in the network during the inter-
val [t�D; t].

3. A setT of D new nodes arrive in the network during
the interval[t�D; t].

4. All the incoming nodes of setT choose to connect to
theD cache nodes in setS.

Since each of the above events can happen with constant
probability, the lemma follows. 2

Lemma 5.2 Consider the networkGt, for t > N . There is
a constant probability that there exists a small (i.e., constant
size) isolated component.

Proof: By Lemma 5.1 with constant probability there is a
subgraph (call itF) of typeH in the network at timet �
N . We calculate the probability that the above subgraphF
becomes an isolated component inGt. This will happen if
all 2D nodes inF survive till t and all the neighbors of the
nodes inF (at mostC(C �D) of them connected to theD

d-nodes

c-nodes

Figure 1. Subgraph H used in proof of lemma
5.2. Note that D = 4 in this example. All the
four d-nodes are connected to the same set
of four c-nodes (shown in black).

c-nodes) leave the network and there areno re-connections.
The probability that the2D subgraph nodes survived the
interval[t�N; t] is e�2D. The probability that all neighbors
of the subgraph leave the network with no new connections
is at least(1 � e)�C(C�D)(1 � D

D+1)
C(C�D). Thus, the

probability thatF becomes isolated is at least

e�2D(1� e)�C(C�D)(1� D

D + 1
)C(C�D) = �(1)

2

Theorem 5.1 The expected number of small isolated com-
ponents in the network at any timet > N is
(N), when
there are no preferred connections.

Proof: Let S be the set of nodes which arrived during the
interval[t�N; t� N

2]. Let v 2 S be a node which arrived
at att0. From the proof of Lemma 5.2 it is easy to show that
v has a constant probability of belonging to a subgraph of
typeH at t0. Also, by the same lemma,H has a constant
probability of being isolated att. Let the indicator variable
Xv, v 2 S denote the probability thatv belongs to a iso-
lated subgraph at timet. Then,E[

P
v2S Xv] �
(N), by

linearity of expectation. Since the isolated subgraph is of
constant size, the theorem follows.2

References

[1] N. Alon and J. Spencer.The Probabilistic Method,
John Wiley, 1992.

[2] K. Azuma. Weighted sums of certain dependent ran-
dom variables.Tohoku Mathematical Journal, 19,
357-367, 1967.

7

[3] B. Bollobas.Random Graphs, Academic Press, 1985.

[4] D. Clark. Face-to-Face with Peer-to-Peer Networking,
Computer, 34(1), 2001.

[5] I. Clarke. A Distributed Decentralized Information
Storage and Retrieval System, Unpublished report,
Division of Informatics, University of Edinburgh
(1999).

[6] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong.
Freenet: A distributed anonymous information storage
and retrieval system, InProceedings of the Workshop
on Design Issues in Anonymity and Unobservability,
Berkeley, 2000. (http://freenet.sourceforge.net)

[7] Gnutella website.http://gnutella.wego.com/

[8] Gnutella: To the Bandwidth Barrier and Beyond,
http://dss.clip2.com/gnutella.html

[9] R. Motwani and P. Raghavan.Randomized Algo-
rithms, Cambridge University Press, 1995.

[10] S.M. Ross.Applied Probability Models with Opti-
mization Applications, Holden-Day, San Francisco,
1970.

8

