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Abstract— We study hybrid search schemes for unstructured
peer-to-peer networks. We quantify performance in terms of
number of hits, network overhead, and response time. Our
schemes combine flooding and random walks, look ahead and
replication. We consider both regular topologies and topologies
with supernodes. We introduce a general search scheme, of which
flooding and random walks are special instances, and show how
to use locally maintained network information to improve the
performance of searching. Our main findings are: (a)A small
number of supernodes in an otherwise regular topology can offer
sharp savings in the performance of search, both in the case of
search by flooding and search by random walk, particularly when
it is combined with 1-step replication. We quantify, analytically
and experimentally, that the reason of these savings is that the
search is biased towards nodes that yield more information.
(b)There is a generalization of search, of which flooding and
random walk are special instances, which may take further
advantage of locally maintained network information, and yield
better performance than both flooding and random walk in
clustered topologies. The method determines edge criticality
and is reminiscent of fundamental heuristics from the area of
approximation algorithms.

I. I NTRODUCTION

Flooding is the predominant search technique in unstructured
peer-to-peer (P2P) networks. If we measure performance as
the number of exchanged messages per distinct response,
flooding with small time-to-live performs well in regular
networks. However, its performance deteriorates as the time-
to-live increases, or if the topology of the underlying network
is not regular [1]. In addition, flooding has poor granularity
[2], [3].

Simulating a random walk has been proposed as an alterna-
tive search technique. In regular topologies, the performance
of the random walk simulation method appears to be better
than the performance of flooding. In addition, the random walk
simulation method scales well and has excellent granularity.
However, the simulation of a random walk is inherently
sequential, which causes a large increase in the response time
[1], [3].

We consider hybrid schemes which can be viewed as
a random walk of substantially shorter length (and hence
smaller response time), combined with very shallow floodings
on every step of the random walk (see Figure 1d); similar

A. Flooding

B. Long random walk

   C. General search scheme
(e.g. flooding with direction)

        D. Short random walk with
                  local flooding 
          (replication, look ahead)

Fig. 1. Figure 1a represents search by flooding. Flooding has good
performance for small values of time-to-live. Figure 1b represents search
by random walk. The response time is proportional to the length of the
walk. Figure 1c represents a general search scheme, which is flooding
amplified towards a critical direction. This is suitable in the case of clustered
topologies, where the critical direction leads flooding outside a cluster. Figure
1d represents a shorter random walk with local floodings. This decreases
the response time and is particularly suitable when combined with 1-step
replication.

hybrid schemes have been discussed explicitly in [4], [5] and
implicitly in [6]. We shall refer to these schemes as random
walks with lookahead. Alternatively, very shallow floodings,
say of depth 1, can be thought of as a 1-step replication
strategy, that is, where each node keeps a copy of the indices
of his neighbors. In sparse networks, such replication causes
low network overhead, while the benefits of the replication
can be enjoyed by all future searches.

What is the analytic justification for the good performance
of such hybrid schemes? Does the analysis suggest further
efficient search algorithms? Is there a general abstraction, of
which flooding and random walks are special instances? Can
such an abstraction be useful in obtaining even more efficient
search algorithms?

The first contribution of this paper is to give analytic
justification of why the simulation of a short random walk



with shallow floodings on every step performs particularly
well. The idea is the following. Naturally, we expect that the
time to discover a certain number of nodes using a random
walk with shallow floodings will be somewhat smaller than in
the simulation of a random walk without local floodings; the
reason is that in each step of the random walk with shallow
floodings we visit a node and all its neighbors, In particular,
in a sparse network (say, with constant average degree and
hence constant average gain per node), we would intuitively
expect a constant saving in the response time. We show that
there are sparse networks where the saving in the response
time can be much sharper. In particular, we show that, in a
standard random graph model, if the network hasΘ(n) nodes
of constant degree andΘ(

√
n) nodes of degreeΘ(

√
n) then,

the expected time to discoverΩ(n) nodes isO(
√

n); this is
in Theorem 4.2. The proof indicates that the reason for the
dramatic improvement in the response time of random walk
with local floodings is because the random walk biases the
sampling towards the nodes that have high degree and hence
yield more information using the shallow floodings.From
the practical point of view, Theorem 4.2 suggests that search
by random walk with lookahead 1, or with 1-step replication,
substantially amplifies its benefits when there is discrepancy
on the degrees of the underlying topology.(A remark is due
about the assumption of discrepancy ofΘ(

√
n) in the degrees

of a P2P network. Is this assumption realistic? Firstly, note
that we show our results for large degreesβ

√
n, whereβ can

be a small constant; one may interpret the degrees of ultra-
peers in current P2P networks for someβ=0.1. Secondly, we
mainly use theΘ(

√
n) assumption in our analytical results,

for which this choice makes the calculations and the principal
underlying phenomena cleaner. We can obtain similar results
for much smaller values of the large degrees, with much more
detailed calculations.)

On the other hand, we noted that flooding has poor per-
formance when there is discrepancy in the degrees of the
underlying network. The second contribution of this paper
is to rectify the performance of flooding in the case of a
sparse network with a few vertices of large degrees. We study
normalized flooding, where a vertex of small degree forwards
a query to all his neighbors, while a vertex of large degree
forwards a query to a small subset of its neighbors chosen
uniformly at random. In Theorem 3.3, we show that, in a
random network withΘ(n) nodes of constant degree and
Θ(
√

n) nodes of degreeΘ(
√

n), normalized flooding achieves
performance comparable to flooding in a regular graph. In
Theorem 4.3, we further show that normalized flooding with
1-step replication achieves performance comparable to random
walk with 1-step replication, further indicating that the gaining
in 1-step replication comes from the bias of large degrees, and
further strengthening the suggestion to use a small number of
supernodes.

The moral of Theorems 4.2 and 4.3 can be thought of as
follows. These theorems tell us that,using local information of
the network, in this case the degrees, we can get global benefit,
by biasing the sampling towards the vertices with a lot of

information. Is there other local information that can be useful
in searching? In a long sequence of theory papers, information
concerning “edge criticality” has given novel approximation
algorithms for NP-complete problems. In particular, [7] show
that there are labels that can be assigned to edges, so that edges
across bad cuts of the graph get heavier weights, and doing
region growing according to these labels finds sparse cuts [8].
In addition, very roughly, [9], [10] show that these labels can
be approximated by (repeated computations of) congestion
under shortest path routings. Reminiscent of these techniques,
we define edge criticality metrics that identify edges belonging
to sparse cuts. We note that these metrics can be computed
by local statistics that the network keeps anyway.

The third contribution of this paper is todefine a gener-
alization of searching, of which flooding, random walks and
random walks with lookahead are special instances. This is
particularly simple to implement. In particular, we assume
that a node initiates a search by assigning a budget, which
is an upper bound on the number of messages that will be
exchanged during the search. The node then partitions the
budget, and may forward different partition classes of the
budget to different neighbors. We show that this scheme is
particularly useful when edge criticality is known. See Figure
1c. Suppose that the underlying network is clustered. Then, the
thick edges will be assigned larger criticality, thus shifting a
substantial part of the initial budget outside a specific cluster,
and essentially initiate a new flooding in a different cluster.
We report experimentation, where this heuristic has very good
performance.

In summary, we show that (a) the existence of super-nodes
improves searching performance if combined with suitable
defined protocols, and (b) preferential treatment of links
according to their criticality can further improve protocol
performance.

The balance of the paper is as follows. In Section II we
give the graph models that we use and some crucial structural
properties that will be later used in the proofs. In Section III
we review the good behavior of flooding in regular graphs
(Theorem 3.1), and argue that this behavior deteriorates in
graphs with supernodes (Theorem 3.2) while normalization
rectifies this deterioration (Theorem 3.3). In Section IV we
review the behavior of random walks in regular graphs (The-
orem 4.1), and argue that 1-step replication in graphs with
supernodes can substantially improve the performance of the
random walk method (Theorem 4.2). We further show that
similar savings can be achieved by normalized flooding and
1-step replication (Theorem 4.3), further indicating that the
savings come from the use of supernodes. In Section V we
describe the generalized search scheme. In Section VI we
report experimental evaluation.

II. RANDOM GRAPH MODELS

In this section we introduce random regular graphs, which
aim to capture the behavior of a typical regular topology, and
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random graphs with supernodes, which aim to capture the
typical behavior of a sparse network with a small number of
large nodes. We review the graph theoretic notion of expansion
and relate to the performance of flooding (see expressions 3,
5, and 1).

For graphs with supernodes, we establish new structural
facts which characterize the neighborhoods of nodes with large
degrees (Lemmas 2.1, 2.2 and 2.3).

We use the configurational random graph model. This is
a standard model in the theory of random graphs as well as
networking. In particular, ford1 ≥ d2 ≥ . . . ≥ dn denoting
the degrees of a graph onn nodes, we generate a random
graph as follows. First considerD =

∑n
i=1 di mini-vertices

corresponding to nodes in the natural way: the firstd1 mini-
vertices correspond to node 1, the nextd2 mini-vertices
correspond to node 2, and so on. Then consider a random
perfect matching over theD mini-vertices, and a graph on
the originaln vertices defined by adding one link from node
i to nodej for each edge of the perfect matching that was
connecting a mini-vertex corresponding toi with a mini-vertex
corresponding toj. Note that this is a multigraph with self
loops. In this section we maintain multiple links and self loops
for analytic convenience.

Let d be a constant. Byrandom regular graph, denoted
Gn,d, we mean a random graph in the configurational model,
with di = d, 1≤ i≤ n. We next introduce a random graph
model for graphs with supernodes. Letα andβ be constants.
Considerαn

1
2 nodes of degreeβn

1
2 , calledlarge vertices, and

all the remaining nodes of degreed, calledsmall vertices. By
random graph with supernodes, denotedGn,d,α,β , we mean
a random graph in the configurational model following the
above degree sequence. Note that random regular graphs and
random graphs with supernodes have sum of degreesD=dn
andD' (αβ+d)n respectively, hence they are sparse, in the
sense that the sum of the degrees of their vertices isΘ(n).
Throughout this paper,' means1±o(1).

We further review the notion of vertex neighborhood and
relate it to the performance of flooding. All the theorems in
Section III are based on the characterization of vertex neigh-
borhoods. We need the following definitions. LetG(V,E) be
an undirected graph, with|V |=n. Let S be a subset of vertices,
S ⊂ V , and letS̄ be its complement,̄S = V \ S. Define the
vertex neighborhoodof S as Γ(S) = {u ∈ S̄ : (v, u) ∈
E , for somev ∈ S}. Now let Si(v) be the set of vertices
visited by flooding that initiated at vertexv with time-to-live
i, and note thatSi(v)=Si−1(v)∪Γ(Si−1(v)). Suppose thatG
is a d-regular graph. How many messages did each vertex
propagate? The vertexv propagatedd messages, and each
vertex inSi−1(v) propagated at mostd−1 messages, namely
to all its neighbors except the one from which he received the
query. Vertices inΓ(Si−1(v)) were reached with time-to-live
0 and hence did not propagate any messages. Now we may
upper bound the ratio of distinct responses over number of

messages

|Si−1|+ |Γ(Si−1(v))|
(d− 1)|Si−1(v)|

=
1

d− 1

(
1 +

|Γ(Si−1(v))|
|Si−1(v)|

)
(1)

Since, 1 describes the performance of searching, it is important
to examine the ratioΓ(Si−1(v))/|Si−1(v)|.

For a random regular graphGn,d, [11] show the following
property. For an arbitrary subset of verticesS of a graphG,
define thecutsetof S, ∇(S), as∇(S) = {(v, u) ∈ E : v ∈
S, u ∈ S̄}. Let Si(v) be the set of vertices reached by flooding
with time-to-live i, as above. [11] show that, with probability
1−o(n−2), for all verticesv and for alli : (d−1)i ≤ n

1
2 log n,

|∇(Si(v))|≥'(d− 1)i (2)

We claim that this implies that, for all verticesv, and for all
i : (d−1)i ≤ n

1
2 ,

|Γ(Si(v))| ≥' (d− 1)i (3)

To see this, note that (2) applied toSi+1(v) gives
|∇(Si+1(v))| ≥' (d−1)i+1. But all edges in∇(Si+1(v))
must be incident to a vertex inΓ(Si(v)), and each vertex in
Γ(Si(v)) can yield at mostd−1 edges in∇(Si+1(v)), which
implies that|Γ(Si(v))| ≥' (d−1)i.

For the random graphGn,d, [12] further claim:

|∇(S)| ≥
{

(1−O( 1√
d

+ ε))d|S| |S| ≤ ε|V |
d|S|/4 ε|V | ≤ |S| ≤ |V |/2

(4)
which immediately implies

|Γ(S)| ≥
{

(1−O( 1√
d

+ ε))|S| |S| ≤ ε|V |
|S|/4 ε|V | ≤ |S| ≤ |V |/2

(5)
We will use (3) and (5) in the characterization of flooding in
Section III.

We proceed to discuss structural properties for graphs with
supernodes. The crucial structural properties are that each
small node is incident to a large degree node with constant
probability, and each large node has, in expectation and with
sharp concentration, a constant fraction of its edges incident to
distinct large nodes and a constant fraction of its edges incident
to small degree nodes. We will also use the following form of
Chernoff bounds [13]. LetXi, i = 1, . . . , N , be independent
random variables withPr[Xi =1]=pi andPr[Xi =0]=1−pi.
Let X =

∑N
i=1 Xi and letp=(

∑
i=1 Npi)/n. Then,

Pr[X − pN < −∆] < e−
∆2
2pN (6)

and
Pr[X − pN > ∆] < e

∆2
2pN + ∆3

2(pN)3 . (7)

More formally, the structural facts for graphs with supern-
odes are Lemmas 2.1, 2.2 and 2.3 below.

Lemma 2.1:Let G = Gn,d,α,β be a random graph with
supernodes, and letε be any constantε < max{α, β}. Then,
with all but exponentially vanishing probability, every large

vertex ofG has (α−ε)β
d+αβ

εn
1
2

2 distinct large neighbors.
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Proof: Let v be a large vertex. Suppose thatN = εn
1
2

distinct neighbors ofv are known to be distinct large vertices.
What is the probability thatv is incident to an additional
distinct large vertex? There are(α− ε)n

1
2 remaining large

vertices, hence the remaining total degree on large vertices
is (α−ε)n

1
2 βn

1
2 . The total degree of all vertices is(d+αβ)n.

Hence the probability thatv sees an additional distinct large
degree vertex, given that it has seenεn

1
2 distinct vertices is at

leastp = (α−ε)β
d+αβ . We may now bound the probability thatv

is incident to less thanpN/2 distinct vertices by observing
that this probability is smaller than the probability inN
independent experiments, each with probability of successp,
there were less than∆ = pN/2 successes. Using (6) above,
we get exponentially small tails.

Lemma 2.2:Let G = Gn,d,α,β be a random graph with
supernodes. Then, with all but exponentially vanishing prob-

ability, every large vertex ofG has d
d+αβ

βn
1
2

2 edges incident
to (not necessarily distinct) small neighbors.

Proof: Let v be a large vertex. LetN = βn
1
2 . Suppose

that N−1 edges incident tov are known to have their other
endpoint incident to a small vertex. Then, the probability that
the last edge is also incident to a small vertex isdn−d

(d+αβ)n '
d

d+αβ = p. We may now bound the probability thatv has

less than d
d+αβ

βn
1
2

2 edges incident to small vertices by the
probability that in N independent experiments, each with
probability of successp, there were fewer than∆ = pN/2
successes. By (6), this is exponentially small.

Lemma 2.3:Let G = Gn,d,α,β be a random graph with
supernodes. Then, with all but exponentially vanishing prob-
ability, every large vertexv has Γ({v}) ∪ Γ (Γ({v})) ≥
(α−ε)εβ2

4(d+αβ)2 n.

Proof: By Lemma 2.1,v has α−ε
d+αβ

εβn
1
2

2 distinct large
neighbors. By Lemma 2.2, each distinct large neighbor has

d
d+αβ

βn
1
2

2 distinct edges incident to small vertices. But each
small vertex has at mostd incident edges, and the statement
of the claim follows.

III. F LOODING AND NORMALIZATION

Flooding is the predominant search technique in unstructured
peer-to-peer networks. Such floodings are typically parame-
terized by a time-to-live,τ . In particular, a node initiates a
search by propagating a request, together with a time-to-live
τ , to all his neighbors. Without loss of generality, we may
think of the request as an exploration of the network: “if you
get this message for the first time, then report your presence
(e.g. address) to the initiator of the request”. Flooding proceeds
as follows. The first time that a node receives a request with
time-to-live t, the node responds to the request and, ift > 0,
the node propagates the same request to all his neighbors. If
a node receives the same request multiple times, then it will
neither respond nor propagate it.

We quantify the performance of flooding by thenumber
of responses, the response time(we assume that the delay
of a particular response is proportional to the number of
hops between the initiator of the query and the responding
node), and by thenumber of propagated messages. Clearly,
the number of responses and the response time quantify the
quality of service perceived by the initiator of the search, and
the number of propagated messages quantify the overhead
perceived by the network. In practice, flooding is known
to perform very well for small values ofτ , however the
performance does not scale well withτ . In addition flooding
has poorgranularity.

When a graph is not regular, then the performance of
flooding deteriorates. In particular, when large degree vertices
are reached, then these cause a sudden sharp increase in the
number of neighbors they introduce (hence poor granularity),
which, in turn, causes a lot of shared edges (hence poor perfor-
mance in terms of number of messages per distinct number of
discovered nodes). We therefore considernormalized flooding
which is the following algorithm. Letdmin be the minimum
degree of the network. In normalized flooding, when a node
of degreedmin receives a query, the node propagates the
query to all his neighbors (except the one which forwarded
the query). When however a node of larger degree receives
a query, the node propagates the query only todmin of his
neighbors, chosen uniformly at random from the entire set
of his neighbors (except the one which forwarded the query).
This is the natural normalization, and it is well known common
practice (e.g. see [14]).

In Theorem 3.1 we establish the good behavior of flooding
in regular graphs. The proof of this theorem is directly based
on known structural properties of random regular graphs. Our
contribution is to translate these properties in the context of
flooding, as expressed in (1). It is important to notice that
the upper bounds in Theorem 3.1 differentiate between ranges
of the time-to-live, and clearly suggest that the guarantees
on the performance of flooding deteriorate as the time-to-live
increases. The number of distinct nodes discovered increases
exponentially, and this indicates poor granularity.

Theorem 3.2 is a lower bound for flooding in graphs with
supernodes. It indicates that, without normalization, a large
vertex is discovered for a very small value of time-to-live,
hence even poorer granularity. Theorem 3.3 indicates that
normalized flooding in graphs with supernodes can rectify the
performance of flooding. In particular, it brings the perfor-
mance of normalized flooding, up to order of magnitude, to
the performance of flooding in regular graphs (we show this for
small values of time-to-live where flooding in regular graphs
has its best behavior). The proofs of Theorems 3.2 and 3.3
make critical use of the structural properties established in
Lemmas 2.1, 2.2, and 2.3.

For analytic convenience in the analysis of normalized
flooding, we think of the following finer structure inGn,d,α,β .
Each set ofβn

1
2 minivertices corresponding to a large vertex

is further partitioned into minigroups ofd minivertices. We
may now think ofGn,d,α,β as a random regular graph with all

4



minigroups corresponding to the same large vertex contracted
to a single large vertex.

Theorem 3.1:Let Gn,d be a random regular graph, letv
be a node ofGn,d, and consider a flooding in the basic
scenario initiated byv with time-to-liveτ . LetS be the number
of distinct nodes queried by this flooding and suppose that
|S| ≤ |V |/2. Then, forτ ≤ log n

2 log(d−1) , the number of distinct
responses is|S| ≥' (d−1)τ−1 and the number of distinct

responses per message is at least' 1
d−1

(
2−O( 1√

d
)
)

, almost

surely. Furthermore, for anyS with |S| ≤ ε|V |, ε < 1/2,

the number of distinct responses is|S| ≥'
(
2−O( 1√

d
+ε)

)τ

and the number of distinct responses per message is at least
' 1

d−1

(
2−O( 1√

d
)
)

, almost surely. Finally, for anyS with

|S| ≤ |V |/2, the number of distinct responses is|S| ≥'
(1 + 1

4 )τ and the number of distinct responses per message is
at least 1

d−1 (1+γ), almost surely.
Proof: For random regular graphs, the behavior of

flooding for τ ≤ log n
2 log(d−1) is derived from the fact that

breadth-first-search with bounded depth, in particular until
n

1
2 log n nodes are visited, has very good behavior, almost

surely. We expressed this in formula (3). Now the performance
claimed in Fact 3.1 forτ ≤ log n

2(d−1) can be obtained as follows.
Using (3), the number of distinct responses received with time-
to-live τ is∑τ−1

i=0 |Γ(Si(v))| ≥ '
∑τ−1

i=0 (d−1)i

= (d−1)τ+1−1
d−2

≥ (d−1)τ .

(8)

For the number of messages per distinct response we use (5).
Now the number of messages per distinct response follows by
substituting (5) in (1). In particular, since|S| ≤ (d− 1)τ , for
τ ≤ log n

2 log(d−1) we get|S| ≤ |V | 12 , which impliesε ≤ |V |− 1
2 ,

and hence|Γ(Sτ−1(v))|/|Sτ−1(v)| is at least1−O(1/
√

d).

Theorem 3.2:Let Gn,d,α,β be a random graph with supern-
odes, letv be a node ofGn,d,α,β of degreed, and consider
a flooding initiated byv in the basic flooding scenario. Then,
for some time-to-liveτ =Θ(log log n), the number of distinct
responses isΩ(n), almost surely.

Proof: Consider flooding with time-to-liveτ '
c logd−1 log n + 1, for some constantc. We first argue that,
with all but polynomially vanishing probability, a large vertex
is found. To see this, consider the vertices visited with time-to-
live up toτ−1, and suppose that this set does not contain a large
degree vertex. This set then can be thought of as the result of
flooding on a randomd-regular graph, and by (2), the cutset
of this set has at least(d−1)τ−1 edges. The probability that
the other endpoint of each edge in this cutset is a small vertex
is d

d+αβ . Thus the probability that no vertex inΓ(Sτ−1(v)) is

large can be bounded by( d
d+αβ )(d−1)

τ−1
= ( d

d+αβ )c log n. So
we know that, almost surely, within the firstO(log log n) steps
we will see a large vertex. Now, by Lemma 2.3 this vertex will
exploreΩ(n) vertices in two more steps of the flooding.

Theorem 3.3:Let Gn,d,α,β be a random graph with supern-
odes, letv be a node ofGn,d,α,β , and consider a normalized
flooding initiated byv with time-to-live τ ≤ log n

2 log(d−1) . Then,
the number of distinct responses isΩ((d − 1)τ−1) and the
number of messages per response isO(1), almost surely.

Proof: By Theorem 3.1, inτ , the number of minigroups
seen is(d−1)τ−1. The expected number of small vertices is

d
(d+αβ) (d−1)τ−1. Now using (6), the probability that less than

d
2(d+αβ) (d−1)τ−1 are seen is vanishingly small.

IV. RANDOM WALKS AND REPLICATION

Everything else being equal, the best way to search a graph
would be by uniform sampling. Assuming that a random
node of the network could be generated efficiently, we could
take k such samples simultaneously at cost one message
per sample. By the well known coupon collection theorem
(uniform sampling with replacement), for any1 ≤ k ≤ n,
the expected number of samples to visitk distinct nodes is
(Hn − Hn−k)n, whereHi is the i-th harmonic number. In
particular, the expected number of samples to visit all the
nodes isn log n and, for any constantε < 1, the expected
number of samples to visitεn distinct nodes is ε

1−εn. Thus, the
amount of network overhead per distinct response can come
arbitrarily close to 1, while retrieving a constant fraction of
the search space. In addition, all the samples can be drawn
simultaneously. The drawback of course is that it is not known
how to implement uniform sampling in the relevant application
context.

The random walkmethod has been proposed as a practical
alternative to implement uniform sampling [1], [3]. In particu-
lar, in several random graph models, the so-called mixing time
of the random walk, which is the number of simulation steps
in order for the random walk to reach a distribution close (for
sampling purposes) to uniform, isO(log n). This means that
we may simulatek uniform samples withO(log n) random
walk steps for each uniform sample. Since the random walks
can be simulated in parallel, and assuming that the response
delay of a random walk is proportional to the number of
simulation steps of the walk, we get maximum response time
O(log n), overhead at mostO(k log n), while achieving per-
formance similar to uniform sampling. The drawback of this
approach is the network overhead which scales asO(log n).
On the positive side, the theory of cover times [15] [16],
complexity theory [17], [18] and extensive experimentation
[1] suggest that this overhead can be reduced to a constant
by taking O(log n) steps to randomize and then usingk
successive stepsof the random walk in the place of indepen-
dent samples. The drawback however is that the approach is
inherently sequential and hence introduces maximum response
time at leastk.

The behavior of the random walk method for regular graphs
is in Theorem 4.1 below. We give this well known theorem
without proofs.
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Theorem 4.1:Let Gn,d be a random regular graph, letv
be a node ofGn,d, and consider a random walk starting at
v. Then, for anyk with 1 ≤ k < n, the expected number of
messages and response time to getk distinct responses is at
most (Hn−Hn−k)nO(log n), almost surely. In addition, the
expected number of messages to getn distinct responses is
d−1
d−2n log n, almost surely.

One way to reduce the response time is to perform a much
shorter walk, and in addition perform shallow floodings on
each step of the walk. We call this methodrandom walk
with lookahead. In regular graphs, for constant lookahead
(flooding with constant depth) we expect a constant saving
in the response time. Here we observe that the savings in the
response time are much sharper, if the graph has supernodes;
similar results have been also observed in [4] and [5] in
power law graphs. In particular, Theorem 4.2 suggests that,
for lookahead 1, we may visitΩ(n) nodes with response
time O(n

1
2 ). The proof of Theorem 4.2 makes crucial use of

the structural properties of graphs with supernodes that were
established in Section II.

Let us further consider 1-step replication. In this scenario, a
node maintains information about all his neighbors and, when
queried, includes this information in his response. In experi-
ment, [3] observed very good performance of the sequential
random walk method in a network with 1-step replication.
In a sparse network, 1-step replication can be implemented
with a one-time linear overhead where all edges exchange
the information of their endpoints, while the benefit of this
replication can be experienced by all future queries (see
also [19] for another application of lookahead). Theorem 4.2
establishes the performance of 1-step replication. Realize that
lookahead and 1-step replication are different implementations
of the notion of short random walks with flooding with time-
to-live 1 at every step.

Intuitively, the reason why lookahead and 1-step replication
offer very sharp savings in graphs with supernodes is that
the stationary distribution of the random walk has sharp bias
towards large vertices, which yield a lot of information about
their neighbors. Is random walk the only way to achieve such
savings? In Theorem 4.3 we show that normalized flooding can
achieve similar savings (up to order of magnitude). Intuitively,
the reason is that normalized flooding can be also thought of
as mimicking sampling from a distribution with sharp bias
towards large vertices.

Theorem 4.2:Consider anyε such that0 ≤ ε < 1
2 . Let

Gn,d,α,β be a random graph with supernodes, letv be a
node ofGn,d,α,β , and consider a random walk starting atv.
Then, in the 1-step replication scenario, the expected number
of messages and response time to obtainαβn1−ε

4d = Ω(n1−ε)

distinct responses isd+αβ
αβ O(log n)αn

1
2−ε

2 = O(n
1
2−ε log n),

almost surely.
Proof: The stationary distribution of the random walk is

as follows. Each large vertex has probabilityβ/(d + αβ)
√

n,
and each small vertex has probabilityd/(d + αβ)n. Since
there areα

√
n large vertices, the stationary probability of

all large vertices is αβ
d+αβ . Now for the simulation of the

random walk, using the conductance result of [20], we get
that, in O(log n) simulation steps we will have a vertex
sampled from a distribution which is arbitrarily close to the
stationary. Hence, in expectedd+αβ

αβ O(log n) simulation steps
we get a large vertex, and, by coupon collection, in expected∑αn

1
2−ε/2

j=1
αn

1
2

αn
1
2−j+1

= αn
1
2−ε

2 large vertices we getαn
1
2−ε

2

distinct large vertices. So in expectedd+αβ
αβ O(log n)αn

1
2−ε

2

simulation steps we getαn
1
2−ε

2 distinct large vertices. Since

each large vertex hasβn
1
2

2 edges incident to small vertices,

we get αβn1−ε

4 edges incident to small vertices. But each
small vertex can be incident to at mostd large vertices, which
completes the proof

Theorem 4.3:Let Gn,d,α,β be a random graph with su-
pernodes, letv be a node ofGn,d,α,β . Consider normalized
flooding starting atv with time-to-live τ ' log n

2 log(d−1) . Then,
in the 1-step replication scenario, the number of distinct

responses is at least(d−1)τ−1αb2n
1
2

8d(d+αβ) =Ω(n), almost surely, and

the number of messages is at most(2−O( 1√
d
)(d−1)τ =O(n

1
2 ).

Proof: By reasoning as in the proof of Theorem 3.1,
there will be(d−1)τ−1 minigroups. Using (6), there will be
(d−1)τ−1αβ

2(d+αβ) minigroups corresponding to large vertices. How
many minigroups corresponding to distinct large vertices were
found? The probability that a group found corresponded to a

distinct large vertex is at least
αn

1
2− (d−1)τ−1αβ

2(d+αβ)

αn
1
2

≥ 1/2. Using

(6), there will be(d−1)τ−1αβ
4(d+αβ) distinct large vertices. Now, using

Lemma 2.2, each distinct large vertex hasβn
1
2

2 incident small
vertices, and since each small vertex can be incident to at

mostd large vertices, we get a total of at least(d−1)τ−1αb2n
1
2

8d(d+αβ)
distinct small vertices.

V. GENERALIZED SEARCH SCHEMES

We now describe a new searching scheme that allows very fine
granularity of the number of messages that will be used for
searching, like searching with random walks, and still allows
very fast searching, like searching with flooding. A node
initiates a search by picking abudgetk, which is the number
of messages that will propagate in the network. Assuming that
the node hasd neighbors, then the node distributes its budget
by picking d integersk1, . . . , kd, with ki ≥ 0, 1 ≤ i ≤ d, and
k1+ . . . +kd =k. Then, it forwards the query to nodei with
budget equal toki (if ki = 0 then the query is not forwarded
to nodei). Each neighbori will reduce the budget received by
1 and repeat the same process if the new budget is greater than
0. Because the generalized searching is sensitive to budgets,
if a node receives the same query for a second time, from a
different neighbor, then it will forwarded it again. Of course,
the most critical task is the choice ofk1 to kd.
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The generalized searching scheme has both random walks
and floodings as a special instance. To simulate random walk
each node picks a neighbori at random and assigns to it the
remaining budget (sayk−1); all other neighbors are assigned
a budget of0 and thus no query message is forwarded to them.
Flooding in regular graphs can also be simulated easily. Each
node divides the budget equally to all its neighbors minus
the neighbor from which it received the query (if it did not
initiate the message itself). To compute the initial budget, the
node initiating the query needs to have an estimate of the
number of messages that a regular flooding with TTLτ would
generate; in regular graphs with degreed this can be(d−1)τ .
In general graphs it is not possible to simulate flooding exactly.
A good approximation however is to divide the budget to each
neighbor according to their degrees.

The main advantage of the generalized searching is that
it allows arbitrary assignment of budget to each neighbor.
Intuitively, a node should assign a larger budget to neighbors
through which more peers can be reached. This is particularly
important for topologies that have clusters. Assume a topology
with two clusters and few edges between the clusters. When
the search reaches a border node, then that node needs to
forward the query with larger budget to the other cluster since
the nodes in its own cluster can be reached from different
paths. Moreover, the query should propagate with higher
weight towards the border nodes. How should a node allocate
the budget to its neighbors to achieve that behavior? In other
words, what are good heuristics to compute theki’s?

Let us use the generic term “edge criticality” to denote
metrics related to the importance of the edges. One way to
define the criticality of an edge is as the number of shortest-
hop paths between any pair of nodes of the network that use
that edge. The few inter-cluster edges and the edges that lead
to them are assigned higher criticality since a large number of
paths will go through them. Thus, an effective way to perform
searching in topologies with clusters is to divide the budget
according to the criticality of the edge that connects to each
neighbor.

Computing the edge criticality, according to the shortest-
hop path definition, is extremely difficult since each node
should perform a flooding to the entire network to discover
the shortest-hop paths to each other node. A more practical
approach is to have only a subset of nodes discover the shortest
hop paths to each node. Experimentally, we have observed that
computing the shortest-paths from less than 2% of the nodes
was sufficient. Another practical approach is to discover the
shortest-hop paths to all other nodes that have a distance less
than a specified value. In current P2P network, like Gnutella,
each node periodically floods the network with TTL 7 to
discover the peers that are in its horizon. If the flooding
message contained the identity of the originating node, then
intermediate nodes could monitor the queries and the replies
to infer how many shortest-paths go through them. In general,
estimating the edge criticality is possible in current networks,
and, moreover, for the purpose of searching with budgets, a
rough estimation of the edge criticality gives very good results

as we shall see later in Section VI-E.
Note that current peer-to-peer networks already implement

heuristics that use information collected locally to improve
the performance of the network. In implementations of the
gnutella protocol, including mutella [21], the nodes estimate
the so-called “efficiency” of each link, which is the number of
unique queries over the total number of queries received from
that link. Nodes preferentially drop links with low efficiency.
Thus, in current peer-to-peer networks, nodes use local mea-
surements to improve the performance of the network. Our
scheme fits in the same framework and uses locally collected
measurements to improve the performance of searching.

There are many other ways to define edge criticality. In a
long sequence of theory papers, information concerning “edge
criticality” has given novel approximation algorithms for NP-
complete problems. In particular, [7] show that there are labels
that can be assigned to edges, so that edges across bad cuts
of the graph get heavier weights, and doing region growing
(weighted breadth first search) finds sparse cuts [8]. Further-
more, [9], [10] show that these labels can be approximated
by (repeated computations of) congestion under shortest path
routings. Our notion of edge criticality is reminiscent of these
techniques.

Another approach to define edge criticality is by considering
the principal eigenvectors of the stochastic normalization of
the connectivity matrix of the network topology [22]–[25].
Some of these quantities can be also computed efficiently in
a distributed setting [23]. It would be very interesting (also,
rather hard) to obtain analytical results for heuristics such as
the ones proposed in this section.

VI. EXPERIMENTAL EVALUATION

In this section, we study experimentally the performance of
the hybrid and generalized searching schemes, and the benefits
of 1-step replication and lookahead. The experimental results
validate the analytical results of the previous sections, and
quantify in more detail the performance of the proposed
heuristics.

In Section VI-A we present our experimental methodology.
In Section VI-B we compare normalized flooding to regular
flooding. In Sections VI-C and VI-D we study 1-step replica-
tion and shallow lookaheads respectively. In Section VI-E we
study the generalized search scheme.

A. Methodology

1) Performance Metrics:In our experiments we are in-
terested in characterizing the performance of searching. We
choose some distinct random nodes and perform searching
starting from these nodes with the algorithms described in
Sections III, IV, and V (typically we use 500 nodes). We
measure the number of distinct peers visited per searching
per node, which we callhits. Our definition of hits relates
directly to the standard definition of the number of copies of
a specific object discovered by searching, assuming that the
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copies of the requested information are placed at random in the
network. We also measure the number of propagated messages,
which directly relates to the load injected in the network for
searching. In addition, we measure the response time of the
searching, i.e. the maximum time it takes for the query to
complete. More specifically we use the following metrics:
Median and Mean number of distinct peers discovered (hits).
Searching algorithms should maximize the median and mean
number of distinct peers. The median is a more robust metric,
since, in topologies with large irregularities in the degrees, it is
possible to measure relatively large mean values because few
searches may reach a very large number of users and increase
the mean value.
Minimum, Maximum, and Standard Deviation of the number of
hits.A large minimum value is important in order to guarantee
that the algorithm will have a good worst case performance.
The range between the minimum and the maximum values
relates to the variation of the performance of the algorithm.
The variation is measured using the standard deviation. We be-
lieve that algorithms with larger minimum values and smaller
variation are preferable.
Number of messages.Good searching schemes strive to min-
imize the number of messages used to discover as much
information as possible. In order to perform a fair comparison
of the different searching algorithms we require that they use
the same number of messages. Since it is difficult to configure
the parameters of each algorithm to guarantee the exact same
number of messages, we require that the expected number of
messages used in each experiment is approximately the same
for all algorithms.
Granularity of number of messages.This is a qualitatively
and not quantitative metric. In flooding based algorithms it
is difficult to control the parameters of the algorithm, usually
the time-to-live, to use a pre-specified number of messages
for searching. Linear increases in the TTL result usually in
exponential increases in the number of messages. Algorithms
with finer granularity are preferable since the user can control
the number of messages to reach an adequate number of users
(hoping to find enough copies of an item), but, still, not flood
the entire network.
Response time.We also measure the maximum running time of
each algorithm. In this study we assume a very simple discrete-
time model. Each node receives queries from its neighbors and
at the same time processes them and forwards copies of the
queries, if necessary, to its neighbors. The latter queries will
be received at the next unit of time. For all our schemes it
is easy to compute the running time of the algorithm, or an
upper bound of it. For example, the searching time for flooding
with TTL τ is τ . Despite the fact that we do not model many
important parameters that affect the searching time, like for
example propagation and queuing delays, we believe that our
definition of running time can be used to judge the relative
performance of the different algorithms.

2) Topologies: We are interested in studying the perfor-
mance of the searching algorithms in networks with irregular-
ities in the node degrees and in networks with clustered node

topologies. Both cases are typical in complex and unstructured
communication networks. In peer-to-peer networks, users with
very good network connectivity may decide to serve as su-
pernodes. Typically, these users have a much larger number
of neighbors; in the Gnutella network for example the average
user has 4-6 network connections, whereas a supernode may
connect to 20-30 other peers and in many cases have even
more neighbors. Also, a common pattern that appears in every
unstructured communication network is the clusterness of the
topology. The existence of these clusters has been shown
to greatly affect the performance of various communication
functions in these networks, including searching [1], [25].
There are other parameters that may affect the performance
of searching, including the dynamic nature of the topologies,
that have been studied elsewhere and which we ignore in this
study.

We will use the following synthetic topologies to compare
the searching algorithms. Currently, there are limited real
data for operational peer-to-peer networks mainly due to the
difficulty in collecting such topological information.
Random d-regular Graphs.Extensive analytical work has
shown that random d-regular graphs have good properties,
including low diameter, good connectivity (i.e. there are no
clusters of nodes), small second eigenvalue, and good con-
ductance. We will use d-regular random graphs as a canonical
model of a well connected network. Topologies generated with
that model will serve as baseline for comparisons. Moreover,
the topologies of third generation peer-to-peer networks, like
BitTorrent, that use a centralized server to control how the
topology is formed, may be more accurately modeled by well
connected topologies.
Power Law Graphs.Many seemingly complex networks, in-
cluding the Internet at the AS level, the Web Graph, and
many others, have been shown to be characterized by power-
laws. Most typically the degrees of the nodes of the network
follow a power-law. The power-law is usually characterized by
a parameterλ called the powerlaw exponent, which relates to
the probability of observing nodes of high degree according to
the formulaPr [degree > x] ∼ 1/xλ. We use topologies with
λ = 1.4, 2.0, 2.4, 3.0. [4], [5] characterize the performance of
look ahead for power-law topologies. Forλ = 3.0 the largest
degree in 1M nodes graph is less than 100, which brings the
parameters close to real peer-to-peer networks.
Bimodal topologies.Along the lines of Section II we assume
that there are two types of nodes in the network. Few nodes are
connected to a large number of other nodes and, thus, they are
very important for the operation of the network. Such nodes,
which are typically called ultra-peers, are connected to the
Internet through high-speed links and thus they can afford to
connect to have many neighbors. The rest of the users have
few neighbors. In our experiments in a 250K node graph we
have used 500 nodes of degree 500.
Clustered topologies.We assume that there are clusters of
users with very good connectivity inside each cluster. The
number of links between clusters are limited. In particular,
in most of the experiments, we assume that the network is
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composed of a small number of clusters, and each cluster
is a 3-regular random graph. Typical values are networks of
20 clusters of 10K nodes each, and 100 random connections
between each pair of clusters.

B. Normalized Flooding

In this section we verify the results of Section III and compare
the performance of normalized flooding to standard flooding.
Both schemes perform similarly in regular topologies. How-
ever, when the topology contains nodes with high degrees,
which is common in large unstructured communication net-
works, the normalization allows flooding to scale better.

With normalization it is easier to control how many nodes
will be reached by the flooding, thus, allowing, searching at
a finer granularity (but still the number of nodes increases
exponential with the initial TTL). In Table I-A we give the
mean number of unique peers discovered as a function of
the initial time-to-live for four topologies of 250K nodes.
We observe that in regular topologies standard flooding and
normalized flooding behave similarly. In the other topologies
however, which contain nodes of high degree, the increase
in the number of peers is very fast (verifying Theorem 3.2);
after the search reaches a high degree node, increasing the
TTL by 1 or 2 will result in discovering a large part of the
network. This tremendous increase, however, comes at the cost
of reduced efficiency in the searching process (see Table I-B).
A large number of messages reach already discovered nodes.
On the other hand, with normalized flooding (Theorem 3.3)
we have more control on the number of messages generated
and, moreover, higher searching efficiency. Indeed, even in
topologies with nodes of high degree, normalized flooding
behaves similarly to searching in regular graphs.

Normalized flooding behaves better than standard flooding
with respect to other metrics that are not shown in Table I. For
example the standard deviation (normalized by dividing with
the mean) is much smaller (up to 4 times) with normalized
flooding (observe that the standard deviation is of interest in
the cases that the searching has not reached all the nodes
of the network for all starting nodes). This indicates that the
performance is more concentrated around the mean, and, thus,
is less dependent of the starting node. Similar observations
exist for other metrics of interest, like the minimum number
of nodes discovered.

Moreover, the number of peers discovered as a function of
the initial time-to-live follows a more predictable behavior;
in contrast, without normalization there is a sharp jump in
the number of peers discovered after few high-degree nodes
are discovered. In Figure 2 we plot the number of nodes
visited by the flooding as a function of the initial time-to-live.
The straight line in the case of normalized flooding indicates
that the horizon of the search increases exponentially. When
searching in regular graphs we observe similar behavior. With
flooding without normalization, the increase in topologies with
nodes of high degrees is faster than exponential.

Observe that in order to discover the same number of nodes
with normalized flooding as with standard flooding, we need
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Fig. 2. Number of unique peers discovered as a function of the initial time-to-
live. In the case of normalized flooding the number of unique peers increases
exponentially with the TTL, and, moreover, the increase is predictable and
consistent for all nodes. In the case of regular flooding, the increase is much
faster and depends on the node that initiates the flooding.

to increase the TTL. Since the increase of the horizon is more
predictable and can be roughly computed by either knowing
the properties of the topology or by measuring the increase in
the horizon when the TTL increases, it is easy to configure
the value of TTL in order to reach at least a pre-specified
number of nodes. Despite the fact that the increase in the
horizon and in the messages is more predictable, it is still
exponential. Later, we describe searching methods that allow
finer granularity in controlling the number of messages.

C. Evaluation of 1-step replication

Replication of one step is a practical way to improve the
performance of searching by allowing each node to answer
queries on behalf of its neighbors. This advantage comes at
the cost of replicating information about the content of the
neighbors, but, this cost is paid once when a new neighbor
arrives and is amortized over a large number of messages
that go through the node. This scheme is particularly effective
when there are nodes of high degree in the network, as
explained in Section IV. Visiting the nodes of large degree,
and at the same time their neighbors, guarantees that a large
portion of the network has been covered.

The performance of searching in networks of 250K nodes
with normalized flooding and with random walks both with
and without 1-step replication is given in Table II. This
table validates Theorems 4.2 and 4.3. In Table II we report
the average number of unique peers discovered, but similar
observations are given for the other statistics, like the standard
deviation and the minimum number of peers discovered.

Compare Table II with Table I. In the case of regular graphs
normalized flooding with 1-step replication and TTLτ behaves
very similarly to normalized flooding with TTLτ + 1. In
regular graphs random walks with 1-step replication perform
better than floodings (in the worst case 20-30%).

The advantage of 1-step replication becomes clear in graphs
with large degrees, like the power-law graphs and the bimodal
graph of Table II. The number of hits significantly improved
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TABLE I

PERFORMANCE AND EFFICIENCY OF FLOODING AND NORMALIZED FLOODING.

A. Average number of unique peers discovered (F: Flooding, NF: Normalized Flooding). B. Average efficiency of searching (unique peers over messages).

TTL Regular Bimodal Power-Lawλ = 1.4 Power-Lawλ = 2.2
F NF F NF F NF F NF

2 9 9 370.3 9.8 28,216.5 10.9 106.1 10.0
3 21 21 28,463.5 24.9 177,192.9 32.1 1,441.9 27.0
4 45 45 126,581.9 58.5 247,700.5 87.4 12,633.6 67.7
5 93 93 212,759.4 133.6 249,993.2 231.9 62,480.5 161.4
6 188.9 188.9 244,392.6 297.2 249,999 610.6 165,543.6 389.6
7 380.7 380.7 249,635.0 661.7 249,999 1,594.1 238,522.0 930.1
8 763.9 763.9 249,991.4 1,422.8 249,999 4,122.4 249,807.9 2,197.1
9 1,528.7 1,528.7 249,999 3,014.8 249,999 10,430.9 249,999 5,194.6
10 3,051.0 3,051.0 249,999 6,212.4 249,999 24,599.3 249,999 11,953.9

TTL Regular Bimodal Power-Law Power-Law
τ = 1.4 τ = 2.2

F NF F NF F NF F NF
2 1.00 1.00 1.00 1.00 0.97 0.99 1.00 1.00
3 1.00 1.00 0.84 1.00 0.42 0.99 1.00 1.00
4 1.00 1.00 0.63 1.00 0.13 0.98 0.96 1.00
5 1.00 1.00 0.46 0.99 0.11 0.96 0.82 1.00
6 1.00 1.00 0.37 0.98 0.11 0.94 0.56 1.00
7 1.00 1.00 0.34 0.96 0.11 0.92 0.33 1.00
8 1.00 1.00 0.34 0.93 0.11 0.88 0.25 0.99
9 1.00 1.00 0.34 0.87 0.11 0.82 0.25 0.98
10 1.00 1.00 0.34 0.82 0.11 0.74 0.25 0.96

Note: Observe the more gradual increase in the number of peers discovered and the more gradual and slow decrease of efficiency when normalized flooding
is used. This indicates better granularity when using normalized flooding compared to using regular flooding.

TABLE II

PERFORMANCE OF SEARCHING WITH1-STEP REPLICATION.

A. Normalized Flooding
TTL Regular Bimodal Power-Law 1.4 Power-Law 2.2 Clustered

2 21 1,150.4 30,219.5 162.3 32.9
3 45 2,580.5 56,629.5 419.1 74.3
4 93.0 5,820.5 88,795.1 1,122.1 162.1
5 188.9 12,256.9 112,658.4 2,605.3 345.7
6 380.7 25,594.8 132,352.9 5,918.2 738.6
7 763.9 49,742.8 152,177.2 12,059.1 1,578.9
8 1,528.7 87,841.0 176,396.6 23,414.3 3,211.6
9 3,051.0 125,520.9 202,415.0 43,747.4 6,329.7
10 6,068.1 146,710.3 224,319.0 79,205.6 11,962.3

Pre-processing 750,000 990,852 2,446,674 1,265,536 1,019,500
B. Random Walks

TTL Regular Bimodal Power-Law 1.4 Power-Law 2.2 Clustered
2 30.1 813.0 26,649.7 133.4 25.2
3 69.1 1,905.0 55,776.0 407.5 55.3
4 148.2 4,030.1 91,807.4 972.3 127.4
5 304.1 8,730.9 113,002.1 2,190.5 270.5
6 616.3 18,045.4 131,526.0 5,214.3 614.8
7 1,239.6 36,256.0 151,263.1 10,746.3 1,347.0
8 2,484.6 67,627.9 174,907.1 20,442.5 2,961.0
9 4,948.0 108,043.0 199,615.3 38,695.5 6,388.4
10 9,806.2 139,712.5 222,433.2 69,877.1 13,678.1

Pre-processing 750,000 990,852 2,446,674 1,265,536 1,019,500

Note: (1) In the case of Random Walks (Table B) the TTL column indicates
that the random walker is using the same number of messages as if performing
normalized flooding with that TTL. (2) Comparing to Table I, we observe
that 1-step replication increased the performance of searching via normalized
flooding substantially for the same number of messages.

compared to not using 1-step replication (Table I). The main
reason is that both methods, flooding and random walks,
quickly discover the nodes of high degree and through them
discover a large portion of the nodes in the network. In
the cases of graphs with large degrees the performance of
normalized flooding is better than random walk (in the worst
case by approximately 20%); on the other hand, in topologies
with clusters, random walks perform slightly better.

In all cases the preprocessing to implement 1-step replica-
tion is given in the last line of Table II. This cost is amortized
over a large number of queries.

D. Evaluation of random walk with lookahead

An extension of the previous scheme is to perform a short
random walk with shallow local floodings, of TTLτ = 2 on
every step (or, every few steps). We call this random walk
with lookahead. Since we do not think that it is realistic
to maintain replicas of your neighbors’ neighbors, therefore
we charge the algorithm for all the messages generated by
both the random walk and the local flooding. In Table III we
show the performance of random walk with lookaheadτ = 2
in a regular graph and in power-law graph with few large
degrees. The main observation is that the performance of the
random walk with lookahead is similar in terms of unique

TABLE III

PERFORMANCE TOPOLOGIES OF1M NODES.

A. Power-law graph withα = 2.0.
Metric Flooding Random-Walk RW-look

aheadτ = 2
Median 12,652.50 24,692.50 26,097.00
Mean 27,773.31 24,694.32 28,616.97
Min 281 24,457 13,859
Max 393,040 24,930 71,167
Std 42,876.55 87.17 10,605.26
20-th perc. 996 24,495 14,972
Messages 32,640 32,640 32,851
TTL 4 - 2
Time 4 32,640 430

B. 6-Regular random graph.
Metric Flooding Random-Walk RW-look

aheadτ = 2
Median 17,668.50 17,620.00 16,285.50
Mean 17,395.52 17,620.13 16,282.10
Min 10,576 17,389 15,519
Max 19,989 17,816 17,098
Std 1,477.91 73.48 296.20
20-th perc 13,238 17,453 15,667
Messages 22,386 22,386 22,656
TTL 6 - 2
Time 6 22,386 2,152

Note: In the RW-look ahead method, the number of samples between
successive floodings is 4.

peers discovered to performing a long random walk without
lookahead, but, the response time is much smaller. (See also
[19] for a different application of lookahead 2.)

E. Edge criticality and searching with weights

In Table IV we give some statistics of the performance of
generalized searching in topologies with clusters. This is ex-
perimental validation of Section V. We study the performance
of generalized searching for different methods of assigning the
weights on the edges. The weights depend on the number of
the shortest hop paths that go through each link. Recall that we
do not compute all the shortest paths, but, instead, sample by
computing shortest-paths for a subset of the nodes (2% of the
nodes). Since it is possible that the sampling does not cover
all edges, we assign a value of one to each uncovered edge.
The relative weight that a node assigns to its incident edges
depends on the number of shortest-hop paths that use these
edges. Assuming thatr is this ratio, then, in Table IV, we
experiment with different assignments of the weights that are
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proportional to various powers of that ratiori. By increasing
the poweri, we increase the priority we give to the critical
edges, and, as indicated in the table, the performance of
searching increases. Increasing the power biases the searching
towards the direction that leads to the boundary nodes and,
subsequently, to other clusters. Of course, increasing the power
i beyond a certain point reduces the performance (the process
degenerates into oscillations between clusters).

In regular graphs without clustering, generalized searching
performs similarly to standard flooding.

Does generalized searching perform well to other topologies
with good connectivity, like for example power-law graphs
and bimodal topologies? In other words, could the assignment
of edge criticality ever become harmful? In power-law graphs
and bimodal topologies edges incident to large degree vertices
carry a lot of shortest paths and, hence, are assigned large
criticality. However these edges do not belong to bad cuts.
Therefore, in non-regular topologies we normalize the edge
criticality by dividing the number of paths going through an
edge (u, v) by the maximum of the degrees ofu and v.
We have observed experimentally that using normalized edge
criticality makes generalized flooding behave very similarly
to flooding. In other words, if we are careful about the
normalization, generalized searching does not decrease the
performance of known algorithms.

VII. SUMMARY AND FURTHER DIRECTIONS

We studied the performance of various search algorithms
in unstructured P2P networks. We quantify performance in
terms of number of distinct nodes discovered, the number of
propagated messages (network overhead), and the maximum
response time. We quantified the performance of flooding in
regular P2P networks. We quantified the performance of nor-
malized flooding in non regular P2P networks, and showed that
normalization rectifies the problems caused by non regularity.
We showed that 1-step replication is helpful in search by ran-
dom walk as well as search by normalized flooding, especially
when the network has a small number of supernodes. We
studied hybrid and generalized search schemes that can be
viewed as short random walks with shallow local floodings, or
floodings with directional information. Our analysis used the
theory of random graphs, and our new proposed algorithms
are based on edge criticality heuristics previously used in
the theory of approximation algorithms. In all cases we have
validated our results with extensive experiments in very large
topologies.

The random walk method for searching in peer-to-peer
networks has been studied in [1], [3]. Hybrid search schemes
and networks with supernodes have been discussed in [4]–
[6]. Very recently further hybrid search schemes related to
percolation theory are discussed in [26].

Generalized searching poses new theoretic questions and
we propose analytically quantifying directional flooding as an
interesting open problem. Directional flooding is a generic

search scheme and we believe it may become of use in
different networking contexts, such as sensor and ad-hoc
networks. To implement generalized searching we also need
practical heuristics to assign edge weights that use little, and
preferable passive, network measurements.
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