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Abstract—We study hybrid search schemes for unstructured
peer-to-peer networks. We quantify performance in terms of
number of hits, network overhead, and response time. Our ./W
schemes combine flooding and random walks, look ahead and
replication. We consider both regular topologies and topologies
with supernodes. We introduce a general search scheme, of which
flooding and random walks are special instances, and show how
to use locally maintained network information to improve the
performance of searching. Our main findings are: (a)A small
number of supernodes in an otherwise regular topology can offer
sharp savings in the performance of search, both in the case of
search by flooding and search by random walk, particularly when
it is combined with 1-step replication. We quantify, analytically

B.Long random walk

A.Flooding

and experimentally, that the reason of these savings is that the O - .
search is biased towards nodes that yield more information. C.Gener.alsea.rch s.cher.ne D.Short random walk with
(b)There is a generalization of search, of which flooding and  (e.g.flooding with direction) local flooding
random walk are special instances, which may take further (replication, look ahead)

advantage of locally maintained network information, and yield
better performance than both flooding and random walk in
clustered topologies. The method determines edge criticality Fig. 1. Figure la represents search by flooding. Flooding has good

and is reminiscent of fundamental heuristics from the area of performance for small values of time-to-live. Figure 1b represents search
approximation algorithms. by random walk. The response time is proportional to the length of the

walk. Figure 1c represents a general search scheme, which is flooding
amplified towards a critical direction. This is suitable in the case of clustered
I. INTRODUCTION topologies, where the critical direction leads flooding outside a cluster. Figure

L . . . 1d represents a shorter random walk with local floodings. This decreases
Flooding is the predominant search technique in unstructur@d response time and is particularly suitable when combined with 1-step

peer-to-peer (P2P) networks. If we measure performance regication.

the number of exchanged messages per distinct response,

flooding with small time-to-live performs well in regular

networks. However, its performance deteriorates as the tiniyrid schemes have been discussed explicitly in [4], [S] and

to-live increases, or if the topology of the underlying networknplicitly in [6]. We shall refer to these schemes as random

is not regular [1]. In addition, flooding has poor granularityvalks with lookahead. Alternatively, very shallow floodings,

[2], [3]. say of depth 1, can be thought of as a 1-step replication
Simulating a random walk has been proposed as an alterfiategy, that is, where each node keeps a copy of the indices

tive search technique. In regular topologies, the performar@khis neighbors. In sparse networks, such replication causes

of the random walk simulation method appears to be betiéwv network overhead, while the benefits of the replication

than the performance of flooding. In addition, the random wafian be enjoyed by all future searches.

simulation method scales well and has excellent granularity.What is the analytic justification for the good performance

However, the simulation of a random walk is inherentlpf such hybrid schemes? Does the analysis suggest further

sequential, which causes a large increase in the response tifficient search algorithms? Is there a general abstraction, of

[11, [3]. which flooding and random walks are special instances? Can
We consider hybrid schemes which can be viewed asch an abstraction be useful in obtaining even more efficient

a random walk of substantially shorter length (and hen&garch algorithms?

smaller response time), combined with very shallow floodings The first contribution of this paper is to give analytic

on every step of the random walk (see Figure 1d); similgustification of why the simulation of a short random walk



with shallow floodings on every step performs particularlinformation Is there other local information that can be useful
well. The idea is the following. Naturally, we expect that then searching? In a long sequence of theory papers, information
time to discover a certain number of nodes using a randaoncerning “edge criticality” has given novel approximation
walk with shallow floodings will be somewhat smaller than imlgorithms for NP-complete problems. In particular, [7] show
the simulation of a random walk without local floodings; théhat there are labels that can be assigned to edges, so that edges
reason is that in each step of the random walk with shalloaecross bad cuts of the graph get heavier weights, and doing
floodings we visit a node and all its neighbors, In particularegion growing according to these labels finds sparse cuts [8].
in a sparse network (say, with constant average degree a&mdddition, very roughly, [9], [10] show that these labels can
hence constant average gain per node), we would intuitivddg approximated by (repeated computations of) congestion
expect a constant saving in the response time. We show thater shortest path routings. Reminiscent of these techniques,
there are sparse networks where the saving in the responsedefine edge criticality metrics that identify edges belonging
time can be much sharper. In particular, we show that, inta sparse cutsWe note that these metrics can be computed
standard random graph model, if the network B4s) nodes by local statistics that the network keeps anyway.

of constant degree an€l(y/n) nodes of degre®(,/n) then, The third contribution of this paper is tdefine a gener-

the expected time to discovél(n) nodes isO(y/n); this is alization of searchingof which flooding, random walks and

in Theorem 4.p. The proof indicates that the reason for th@endom walks with lookahead are special instances. This is
dramatic improvement in the response time of random walarticularly simple to implement. In particular, we assume
with local floodings is because the random walk biases ttieat a node initiates a search by assigning a budget, which
sampling towards the nodes that have high degree and heiscan upper bound on the number of messages that will be
yield more information using the shallow floodings=rom exchanged during the search. The node then partitions the
the practical point of view, Theoren 4.2 suggests that searbhdget, and may forward different partition classes of the
by random walk with lookahead 1, or with 1-step replicatiorhudget to different neighbors. We show that this scheme is
substantially amplifies its benefits when there is discrepanpgrticularly useful when edge criticality is knowSee Figure

on the degrees of the underlying topologdA remark is due 1c. Suppose that the underlying network is clustered. Then, the
about the assumption of discrepancy@f,/n) in the degrees thick edges will be assigned larger criticality, thus shifting a
of a P2P network. Is this assumption realistic? Firstly, notibstantial part of the initial budget outside a specific cluster,
that we show our results for large degrebgn, where3 can and essentially initiate a new flooding in a different cluster.
be a small constant; one may interpret the degrees of ultk&¥e report experimentation, where this heuristic has very good
peers in current P2P networks for sofe-0.1. Secondly, we performance.

mainly use the©(y/n) assumption in our analytical results, In summary, we show that (a) the existence of super-nodes
for which this choice makes the calculations and the principahproves searching performance if combined with suitable
underlying phenomena cleaner. We can obtain similar resuttsfined protocols, and (b) preferential treatment of links
for much smaller values of the large degrees, with much maaecording to their criticality can further improve protocol
detailed calculations.) performance.

On the other hand, we noted that flooding has poor per-The balance of the paper is as follows. In Secfign Il we
formance when there is discrepancy in the degrees of thiee the graph models that we use and some crucial structural
underlying network. The second contribution of this papgroperties that will be later used in the proofs. In Secfioh IlI
is to rectify the performance of flooding in the case of we review the good behavior of flooding in regular graphs
sparse network with a few vertices of large degrees. We stu@heorem[ 3]1), and argue that this behavior deteriorates in
normalized flooding, where a vertex of small degree forwargsaphs with supernodes (Theorém]3.2) while normalization
a query to all his neighbors, while a vertex of large degreectifies this deterioration (Theoreim B.3). In Section} IV we
forwards a query to a small subset of its neighbors choseview the behavior of random walks in regular graphs (The-
uniformly at random. In Theorerp 3.3, we show that, in arem[4.]), and argue that 1-step replication in graphs with
random network with©(n) nodes of constant degree andupernodes can substantially improve the performance of the
©(y/n) nodes of degre®(/n), normalized flooding achievesrandom walk method (Theorefn 4.2). We further show that
performance comparable to flooding in a regular graph. #imilar savings can be achieved by normalized flooding and
Theoren{ 4.8, we further show that normalized flooding with-step replication (Theorein 4.3), further indicating that the
1-step replication achieves performance comparable to randsavings come from the use of supernodes. In Se¢fion V we
walk with 1-step replication, further indicating that the gainingescribe the generalized search scheme. In Seftipn VI we
in 1-step replication comes from the bias of large degrees, amgort experimental evaluation.
further strengthening the suggestion to use a small number of
supernodes.

The moral of Theorems 4.2 and .3 can be thought of as
follows. These theorems tell us thasing local information of Il. RANDOM GRAPHMODELS
the network, in this case the degrees, we can get global benefit,this section we introduce random regular graphs, which
by biasing the sampling towards the vertices with a lot @fim to capture the behavior of a typical regular topology, and



random graphs with supernodes, which aim to capture theessages

typical behavior of a sparse network with a small number of 1Si_1] + IT(Si_1(v))] 1 IT(Si—1(v))|

large nodes. We review the graph theoretic notion of expansion—- . = (1 + s . ) ) (1)
i—1

and relate to the performance of flooding (see expres$ipns 3, (d = 1)ISi-1(v)] d—1
B, and1). Since[] describes the performance of searching, it is important

to examine the ratid'(S;_1(v))/]Si—1(v)].

For graphs with supernodes, we establish new structuralFor a random regular grapfi,, 4, [11] show the following
facts which characterize the neighborhoods of nodes with langeperty. For an arbitrary subset of verticsof a graphG,
degrees (Lemmgs 21, .2 gnd]2.3). define thecutsetof S, V(S5), asV(S)={(v,u) € E : v €

S,u € S}. Let S;(v) be the set of vertices reached by flooding

We use the configurational random graph model. This {§ith time-to-live i, as above. [11] show that, with probability
a standard model in the theory of random graphs as well BSo(n—2), for all verticesv and for alli : (d—1)' < n? logn,

networking. In particular, ford; > ds > ... > d,, denoting )

the degrees of a graph om nodes, we generate a random [V(Si(v))|=z=(d - 1) 2
graph as follows. First consideb =37, d; mini-vertices \ye ¢jaim that this implies that, for all vertices and for all
corresponding to nodes in the natural way: the fifstmini- . (d—1) < n},

vertices correspond to node 1, the neit mini-vertices - ‘

correspond to node 2, and so on. Then consider a random IT(Si(v))] 2= (d—1)" (3)

perfect matching over thé mini-vertices, and a graph on : : ) ;

the originaln vertices defined by adding one IinI§ from node%rvo( Siif(vg?rs;gc?s_tlh)?il[_](zgutaslflféjgetff;%(g} ngg(l\:;})S
tto nod_ey for .egch edge of the pejrfe.ct ,matCh',”Q that wag, ;s e incident to a vertex iA(S;(v)), and each vertex in
connecting a mini-vertex correspondingiteith a mini-vertex I'(S:(v)) can yield at mosti—1 edges iV (S 1 (v)), which
corresponding tgj. Note that this is a multigraph with Selfimplies that|T'(S; (v))| >~ (d—1)".

loops. In this section we maintain multiple links and self loops For the random grthZ
for analytic convenience.

n,d» [12] further claim:

(s { G- OL+ads| 1S <dV]
Let d be a constant. Byandom regular graph denoted = 49|/4 V| < |8 < |V]/2
G,,q, We mean a random graph in the configurational model,
with d; =d, 1 <i<n. We next introduce a random graphyhich immediately implies
model for graphs with supernodes. Letand 3 be constants. 1
Consideranz nodes of degregnz, calledlarge verticesand IT(S)| > { (1- O(ﬁ + S| S| <V
all the remaining nodes of degrdg calledsmall vertices By |51/4 Vi <|s<|vi/2 (5)

random graph with supernodesgenotedG,, 4,3, We mean . . L o
a random graph in the configurational model following th\évﬁe ;/ivcl)lrlﬂu]?e (3) and[{p) in the characterization of flooding in

v r nce. N hat random regular graph . . .
above degree sequence. Note that random regular graphs e proceed to discuss structural properties for graphs with

random graphs with n hav m of degkees] . X
andom graphs with supernodes have sum of de n upernodes. The crucial structural properties are that each

and D~ (a/f+d)n respectively, hence they are sparse, in thi?mall node is incident to a large degree node with constant
sense that the sum of the degrees of their verticed(is). g 9

. probability, and each large node has, in expectation and with

Throughout this paper: meansl+o(1). sharp concentration, a constant fraction of its edges incident to

We further review the notion of vertex neighborhood angistinct large nodes and a constant fraction of its edges incident
relate it to the performance of flooding. All the theorems it Small degree nodes. We will also use the following form of
Section[ Tl are based on the characterization of vertex neighhemoff bounds [13]. LetX;, i=1,..., N, be independent
borhoods. We need the following definitions. L@V, £) be random variables wittPr[X; =1]=p; andPr[X; =0]=1-p;.
an undirected graph, with’|=n. Let S be a subset of vertices,Let X =>";", X; and letp=(}_,_, Np;)/n. Then,
S cCV, and letS be its complementS =V \ S. Define the _ a2
vertex neighborhoodf S asT'(S) = {u € § : (v,u) € PrlX —pN < —A] <e™ =¥ ©)
E, for somev € S}. Now let S;(v) be the set of vertices and , .
visited by flooding that initiated at vertex with time-to-live Pr[X — pN > A] < e#N F50870 @)
i, and note thab;(v)=5;_1(v)UD'(S;_1(v)). Suppose that
is a d-regular graph. How many messages did each vertexMore formally, the structural facts for graphs with supern-
propagate? The vertex propagatedd messages, and eachPdes are Lemmds 2[T, 2.2 gnd]2.3 below.
vertex inS;_1(v) propagated at most—1 messages, namely )
to all its neighbors except the one from which he received theL€mma 2.1:Let G = G, 40,5 be a random graph with
query. Vertices irl(S;_1(v)) were reached with time-to-live SUPernodes, and letbe any constant < max{a, §}. Then,
0 and hence did not propagate any messages. Now we n‘ﬁ‘é\&? all but exponentlally vanishing probability, every large

upper bound the ratio of distinct responses over number \&frtex of G has (;’;;)[f i distinct large neighbors.




Proof: Let v be a large vertex. Suppose thdt= ene We quantify the performance of flooding by tmeimber
distinct neighbors of are known to be distinct large verticesof responsesthe response timgwe assume that the delay
What is the probability that is incident to an additional of a particular response is proportional to the number of
distinct large vertex? There ar(ea—e)n% remaining large hops between the initiator of the query and the responding
vertices, hence the remaining total degree on large verticezde), and by thewumber of propagated messagé&early,
is (a—e)nzBnz. The total degree of all vertices {g+aB)n. the number of responses and the response time quantify the
Hence the probability that sees an additional distinct largequality of service perceived by the initiator of the search, and
degree vertex, given that it has seert distinct vertices is at the number of propagated messages quantify the overhead
leastp = (2‘;;)5. We may now bound the probability that perceived by the network. In practice, flooding is known
is incident to less thamN/2 distinct vertices by observing to perform very well for small values of, however the
that this probability is smaller than the probability iN performance does not scale well with In addition flooding
independent experiments, each with probability of sucgesshas poorgranularity.
there were less thath = pN/2 successes. Usin@](G) above, When a graph is not regular, then the performance of
we get exponentially small tails. m flooding deteriorates. In particular, when large degree vertices

are reached, then these cause a sudden sharp increase in the
Lemma 2.2:Let G = Gy 4,,5 be a random graph with number of neighbors they introduce (hence poor granularity),
supernodes. Then, with all but exponentially vanishing probhich, in turn, causes a lot of shared edges (hence poor perfor-
ability, every large vertex o€ has d+daﬂ ﬂ?f edges incident mance in terms of number of messages per distinct number of
to (not necessarily distinct) small neighbors. discovered nodes). We therefore considermalized flooding

Proof: Let v be a large vertex. Lel = 3n2. Suppose Which is the following algorithm. Letl,,;, be the minimum

that N —1 edges incident t@ are known to have their otherdegree of the network. In normalized flooding, when a node

endpoint incident to a small vertex. Then, the probability th&f degreed.i, receives a query, the node propagates the

the last edge is also incident to a small verte =d_~, query to all his neighbors (except the one which forwarded

— p. We may now bound the probability tﬁaztnhas the query). When however a node of larger degree rgceives
1 a query, the node propagates the query onlyitg, of his
less thanz4-54= edges incident to small vertices by theyeighbors, chosen uniformly at random from the entire set
probability that in NV independent experiments, each withyf his neighbors (except the one which forwarded the query).
probability of succesg, there were fewer tham\ = pN/2  This is the natural normalization, and it is well known common
successes. BY(6), this is exponentially small. B practice (e.g. see [14]).
_ In Theoren{ 3.]L we establish the good behavior of flooding
Lemma 2.3:Let G = G5 be @ random graph with i, veqyiar graphs. The proof of this theorem is directly based
supernodes. Then, with all but exponentially vanishing proy, «nown structural properties of random regular graphs. Our
ability, every large vertexv has I'({v}) U T (I'({v})) > contribution is to translate these properties in the context of

i?dr;iaﬁ)ﬂ- flooding, as expressed ifi](1). It is important to notice that

Proof: By Lemm » has -2=¢ 7% distinct large the upper bounds in Theordm B.1 differentiate between ranges
W

. d+aB 2 ) . .
neighbors. By Lemm& 22, each distinct large neighbor hgk the time-to-live, and clearly suggest that the guarantees
1
+daﬁ Br* distinct edges incident to small vertices. But eac

d
d+af

n the performance of flooding deteriorate as the time-to-live
2 creases. The number of distinct nodes discovered increases
néxponentially, and this indicates poor granularity.
Theoren| 3R is a lower bound for flooding in graphs with
supernodes. It indicates that, without normalization, a large
vertex is discovered for a very small value of time-to-live,
Ill. FLOODING AND NORMALIZATION hence even poorer granularity. Theor¢m] 3.3 indicates that
Flooding is the predominant search technique in unstructuredrmalized flooding in graphs with supernodes can rectify the
peer-to-peer networks. Such floodings are typically paramgerformance of flooding. In particular, it brings the perfor-
terized by a time-to-lives. In particular, a node initiates amance of normalized flooding, up to order of magnitude, to
search by propagating a request, together with a time-to-lithee performance of flooding in regular graphs (we show this for
7, to all his neighbors. Without loss of generality, we magmall values of time-to-live where flooding in regular graphs
think of the request as an exploration of the network: “if yobas its best behavior). The proofs of Theordmg 3.2[and 3.3
get this message for the first time, then report your presenoeke critical use of the structural properties established in
(e.g. address) to the initiator of the request”. Flooding proceeldemmaq 211} 2]2, ar{d 2.3.
as follows. The first time that a node receives a request withFor analytic convenience in the analysis of normalized
time-to-live ¢, the node responds to the request and,> 0, flooding, we think of the following finer structure i@,, 4 «,g3-
the node propagates the same request to all his neighbor&dth set of3nz minivertices corresponding to a large vertex
a node receives the same request multiple times, then it vidl further partitioned into minigroups af minivertices. We
neither respond nor propagate it. may now think ofG,, 4 s as a random regular graph with all

d
small vertex has at most incident edges, and the stateme
of the claim follows.



minigroups corresponding to the same large vertex contracted heorem 3.3:Let G,, 4.3 be a random graph with supern-

to a single large vertex. odes, letv be a node of7,, 4,3, and consider a normalized
flooding initiated byv with time-to-live 7 < %. Then,

Theorem 3.1:Let G,, 4 be a random regular graph, let the number of distinct responses (¥ (d — 1)™~!) and the
be a node ofG, 4, and consider a flooding in the basimumber of messages per respons@©(s), almost surely.
scenario initiated by with time-to-liver. Let S be the number Proof: By Theoren{ 3.1, inr, the number of minigroups
of distinct nodes queried by this flooding and suppose thegen is(d—1)7"~!. The expected number of small vertices is
|S| < |V]/2. Then, forr < ;2%" __ the number of distinct —-%(d—1)"~*. Now using ), the probability that less than

. 210g1(d—1)’ o (d+apB)
responses i$S| >~ (d—1)""! and the number of distinct W(d—l)“l are seen is vanishingly small. [ ]

responses per message is at Ieag}%l 2—0(%)), almost
surely. Furthermore, for any with |S| < ¢|V], € < 1/2,
the number of distinct responses|f >~ (2—0(%4—6))7 IV. RANDOM WALKS AND REPLICATION

and the number of distinct responses per message is at l€&a&irything else being equal, the best way to search a graph
~ L 2—0(%) , almost surely. Finally, for anys with would be by uniform sampling. Assuming_ t_hat a random
|S| < |V|/2, the ‘number of distinct responses [i§] >~ node of the network could be generated efficiently, we could

(1+ )7 and the number of distinct responses per messagdd%€ & such samples simultaneously at cost one message
at least 71+ (1+~), almost surely. per sample. By the well known coupon collection theorem

Proof: For random regular graphs, the behavior diuniform sampling with replacement), for arly < k < n,

flooding for 7 < 512" is derived from the fact that the expected number of samples to visitdistinct nodes is
breadth-first-search with bounded depth, in particular unfiffn — Hn—k)n, Where H; is the i-th harmonic number. In

ni logn nodes are visited, has very good behavior, amoggrticulgr, the expected number of samples to visit all the
surely. We expressed this in formuld (3). Now the performan8@des isnlogn and, for any constart < 1, the expected

claimed in Fact 311 for < ;%£% can be obtained as follows. Number of samples to visit, distinct nodes is=n. Thus, the

Using [3), the number of distinct responses received with tim@mount of network overhead per distinct response can come
to-live 7 is arbitrarily close to 1, while retrieving a constant fraction of
1 r—1 . the search space. In addition, all the samples can be drawn
2izo ITSi()] = ~ Zﬁq (d—1)* simultaneously. The drawback of course is that it is not known
= (d*ld)% (8)  how to implement uniform sampling in the relevant application
> (d-1)7 . context.

he random walkmethod has been proposed as a practical
rnative to implement uniform sampling [1], [3]. In particu-
Ia¥, in several random graph models, the so-called mixing time
oz n 1 = _1 of the random walk, which is the number of simulation steps
T= 2log(gd—1) we get|s| < [V]z, Wh'Ch impliese < [V|~, in order for the random walk to reach a distribution close (for
and hencel'(S;1(v))|/|S;-1(v)| is at leastl—O(1/Vd). ™ sampling purposes) to uniform, @(log n). This means that
we may simulatek uniform samples withO(logn) random
Theorem 3.2:Let G, 4,5 be a random graph with supern-walk steps for each uniform sample. Since the random walks
odes, letv be a node oiG), 44,5 Of degreed, and consider can be simulated in parallel, and assuming that the response
a flooding initiated byv in the basic flooding scenario. Then,de|ay of a random walk is proportional to the number of
for some time-to-liver =©(loglog n), the number of distinct simulation steps of the walk, we get maximum response time
responses i§}(n), almost surely. O(logn), overhead at mosD(klogn), while achieving per-
Proof:  Consider flooding with time-to-liver =~ formance similar to uniform sampling. The drawback of this
clogy_;logn + 1, for some constant. We first argue that, approach is the network overhead which scale®©ésgn).
with all but polynomially vanishing probability, a large vertexon the positive side, the theory of cover times [15] [16],
is found. To see this, consider the vertices visited with time-tgomplexity theory [17], [18] and extensive experimentation
live up tor—1, and suppose that this set does not contain a laig suggest that this overhead can be reduced to a constant
degree vertex. This set then can be thought of as the resulbgf taking O(logn) steps to randomize and then usitig
flooding on a random-regular graph, and by {2), the cutsetuccessive stepsf the random walk in the place of indepen-
of this set has at leagt/—1)"~" edges. The probability that dent samples. The drawback however is that the approach is

the other endpoint of each edge in this cutset is a small verigerently sequential and hence introduces maximum response

is ﬁ. Thus the probability that no vertex IS, _1(v)) is  time at leastk.

large can be bounded %)(d—l)”l = (ﬁ)clogn_ So The behavior of the random walk method for regular graphs
we know that, almost surely, within the fil§(log logn) steps is in Theoren| 4]1 below. We give this well known theorem
we will see a large vertex. Now, by Lemrpa]2.3 this vertex willvithout proofs.

explore{(n) vertices in two more steps of the flooding.m

For the number of messages per distinct response we lse %ﬁi
Now the number of messages per distinct response follows
substituting[(p) in[(L). In particular, sind&| < (d —1)7, for



Theorem 4.1:Let G,, ; be a random regular graph, let all large vertices isdig . Now for the simulation of the
be a node ofG,, 4, and consider a random walk starting atandom walk, using the conductance result of [20], we get
v. Then, for anyk with 1 < k < n, the expected number ofthat, in O(logn) simulation steps we will have a vertex
messages and response time to fyetistinct responses is atsampled from a distribution which is arbitrarily close to the
most (H,, — H,_;)nO(logn), almost surely. In addition, the stationary. Hence, in expectél%?ﬁO(log n) simulation steps
expected number of messages to gedistinct responses is we get a large vertex, and, by coupon collection, in expected
4=inlogn, almost surely. n37/2 gk  _ anb~ large vertices we getx—”%ff

One way to reduce the response time is to perform a mugf:r’:1 an? —j+1 2 21
shorter walk, and in addition perform shallow floodings odistinct large vertices. So in expectéq;g—ﬁO(log n)%ﬁ
each step of the walk. We call this methedndom walk
with lookahead In regular graphs, for constant lookaheal 1
(flooding with constant depth) we expect a constant savi®gch large vertex ha8Z> edges incident to small vertices,
in the response time. Here we observe that the savings in he get aﬁ’j_g edges incident to small vertices. But each
response time are much sharper, if the graph has supernodesall vertex can be incident to at maebtarge vertices, which
similar results have been also observed in [4] and [5] ompletes the proof [ ]

power law graphs. In particular, Theor§m]4.2 suggests that,

for lookahead 1, we may visifd(n) nodes with response Theorem 4.3:Let G, 4.3 be a random graph with su-
time O(n*). The proof of Theorerh 4,2 makes crucial use gferodes, let be a node 0fGy, . 5. Consider normalized
the structural properties of graphs with supernodes that Wefgoding starting aty with time-to-live 7 ~ %_ Then

. . . Og p— )
established in Sectidnl Il. in the 1-step replication scenario, the number of distinct

Let us further consider 1-step replication. In this scenario,rgS onses is at Ieaéi‘rl)hlab%% —Q(n), almost surely, and
node maintains information about all his neighbors and, when P 8d(dtap) o\ Y.

queried, includes this information in his response. In expetfie number of messages is at m@StO(ﬁ)(dfl)T:O(n%).
ment, [3] observed very good performance of the sequential Proof: By reasoning as in the proof of Theorgm]3.1,
random walk method in a network with 1-step replicatiorthere will be(d—1)7"! minigroups. Using[(6), there will be

In a sparse network, 1-step replication can be implementéf‘%'T?ﬁ minigroups corresponding to large vertices. How
with a one-time linear overhead where all edges exchangeny minigroups corresponding to distinct large vertices were
the information of their endpoints, while the benefit of thifound? The probability that a glrou(p found corresponded to a
replication can be experienced by all future queries (sege... : an?—%;@l;‘ﬁ .

also [19] for another application of lookahead). Theofenj 4. stinct large vertex |Ts_1at lea an? = 1/2. Using
establishes the performance of 1-step replication. Realize tf@) there will bemiwﬁﬁ distinct large vertices. Now, using

lookahead and 1-step replication are different implementatioEgmm each distinct large vertex },%é incident small

of the notion of short random walks with flooding with t'me'vertices, and since each small vertex can be incident to at

to-live 1 at every step. : 1) lab?nd
Intuitively, the reason why lookahead and 1-step replicatigRoStd large vertices, we get a total of at IeégESd(d-&-aﬂ)

1

2
offer very sharp savings in graphs with supernodes is tH§gtinct small vertices. .
the stationary distribution of the random walk has sharp bias
towards large vertices, which yield a lot of information about
their neighbors. Is random walk the only way to achieve such
savings? In Theorem 4.3 we show that normalized flooding can
achieve similar savings (up to order of magnitude). Intuitivelyve now describe a new searching scheme that allows very fine
the reason is that normalized flooding can be also thoughtg@tinularity of the number of messages that will be used for
as mimicking sampling from a distribution with sharp biagearching, like searching with random walks, and still allows
towards large vertices. very fast searching, like searching with flooding. A node
. initiates a search by picking lBudgetk, which is the number
Theorem 4.2:Consider anye such that0 < e < 3. Lel ¢ hagsages that will propagate in the network. Assuming that

Gndap be @ random graph with supernodes, lee a o hode hagl neighbors, then the node distributes its budget
node o.fGn,d,a,@, and cqns@er a rand_om walk startingat bg picking d integersk., .. . kg, with &; > 0, 1 < i < d, and
Then, in the 1-step repllcatlop scenario, th?_gxpected numt%lg_ ... +kg=k. Then, it forwards the query to nodewith
of messages and response time to IObt%‘izxﬁT =Q(n'™)  pudget equal td: (if k; = 0 then the query is not forwarded
distinct responses i$:220(logn) 22— = O(n~“logn), to nodei). Each neighbot will reduce the budget received by
almost surely. 1 and repeat the same process if the new budget is greater than
Proof: The stationary distribution of the random walk i9). Because the generalized searching is sensitive to budgets,
as follows. Each large vertex has probability(d + «3)\/n, if a node receives the same query for a second time, from a
and each small vertex has probabilidy(d + a5)n. Since different neighbor, then it will forwarded it again. Of course,
there area+/n large vertices, the stationary probability ofthe most critical task is the choice &f to kg.

l7€ . . . .
aimulation steps we get"-— distinct large vertices. Since

V. GENERALIZED SEARCH SCHEMES
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The generalized searching scheme has both random walkswe shall see later in Sectibn VI-E.
and floodings as a special instance. To simulate random walkNote that current peer-to-peer networks already implement
each node picks a neighborat random and assigns to it theheuristics that use information collected locally to improve
remaining budget (say — 1); all other neighbors are assignedhe performance of the network. In implementations of the
a budget of) and thus no query message is forwarded to themnutella protocol, including mutella [21], the nodes estimate
Flooding in regular graphs can also be simulated easily. Edatle so-called “efficiency” of each link, which is the number of
node divides the budget equally to all its neighbors minusiique queries over the total number of queries received from
the neighbor from which it received the query (if it did nothat link. Nodes preferentially drop links with low efficiency.
initiate the message itself). To compute the initial budget, tiéus, in current peer-to-peer networks, nodes use local mea-
node initiating the query needs to have an estimate of teerements to improve the performance of the network. Our
number of messages that a regular flooding with TTiwould scheme fits in the same framework and uses locally collected
generate; in regular graphs with degrethis can be(d—1)". measurements to improve the performance of searching.
In general graphs it is not possible to simulate flooding exactly. There are many other ways to define edge criticality. In a
A good approximation however is to divide the budget to eadbng sequence of theory papers, information concerning “edge
neighbor according to their degrees. criticality” has given novel approximation algorithms for NP-
The main advantage of the generalized searching is tltatmplete problems. In particular, [7] show that there are labels
it allows arbitrary assignment of budget to each neighbdhat can be assigned to edges, so that edges across bad cuts
Intuitively, a node should assign a larger budget to neighbast the graph get heavier weights, and doing region growing
through which more peers can be reached. This is particulaflyeighted breadth first search) finds sparse cuts [8]. Further-
important for topologies that have clusters. Assume a topologyore, [9], [10] show that these labels can be approximated
with two clusters and few edges between the clusters. Whiey (repeated computations of) congestion under shortest path
the search reaches a border node, then that node needsottings. Our notion of edge criticality is reminiscent of these
forward the query with larger budget to the other cluster sintechniques.
the nodes in its own cluster can be reached from differentAnother approach to define edge criticality is by considering
paths. Moreover, the query should propagate with hightite principal eigenvectors of the stochastic normalization of
weight towards the border nodes. How should a node allocaéite connectivity matrix of the network topology [22]-[25].
the budget to its neighbors to achieve that behavior? In ott&@ome of these quantities can be also computed efficiently in
words, what are good heuristics to compute khs? a distributed setting [23]. It would be very interesting (also,
Let us use the generic term “edge criticality” to denoteather hard) to obtain analytical results for heuristics such as
metrics related to the importance of the edges. One way thee ones proposed in this section.
define the criticality of an edge is as the number of shortest-
hop paths between any pair of nodes of the network that use
that edge. The few inter-cluster edges and the edges that lead
to them are assigned higher criticality since a large number of V1. EXPERIMENTAL EVALUATION
paths will go through them. Thus, an effective way to perforim this section, we study experimentally the performance of
searching in topologies with clusters is to divide the budgeie hybrid and generalized searching schemes, and the benefits
according to the criticality of the edge that connects to eacfi 1-step replication and lookahead. The experimental results
neighbor. validate the analytical results of the previous sections, and
Computing the edge criticality, according to the shortesguantify in more detail the performance of the proposed
hop path definition, is extremely difficult since each nodeeuristics.
should perform a flooding to the entire network to discover In Sectior{ VI-A we present our experimental methodology.
the shortest-hop paths to each other node. A more practifalSection[ VI-B we compare normalized flooding to regular
approach is to have only a subset of nodes discover the shorfigiding. In Section§ VI-C and VID we study 1-step replica-
hop paths to each node. Experimentally, we have observed that and shallow lookaheads respectively. In Sedfion VI-E we
computing the shortest-paths from less than 2% of the nodsgady the generalized search scheme.
was sufficient. Another practical approach is to discover the
shortest-hop paths to all other nodes that have a distance Rsdviethodology
than a specified value. In current P2P network, like Gnutella,1) Performance Metrics:In our experiments we are in-
each node periodically floods the network with TTL 7 tderested in characterizing the performance of searching. We
discover the peers that are in its horizon. If the floodinghoose some distinct random nodes and perform searching
message contained the identity of the originating node, thstarting from these nodes with the algorithms described in
intermediate nodes could monitor the queries and the repligsctions] Tl},[T, and[{ (typically we use 500 nodes). We
to infer how many shortest-paths go through them. In generaleasure the number of distinct peers visited per searching
estimating the edge criticality is possible in current networkper node, which we calhits. Our definition of hits relates
and, moreover, for the purpose of searching with budgetsdimectly to the standard definition of the number of copies of
rough estimation of the edge criticality gives very good results specific object discovered by searching, assuming that the



copies of the requested information are placed at random in theologies. Both cases are typical in complex and unstructured
network. We also measure the number of propagated messages)munication networks. In peer-to-peer networks, users with
which directly relates to the load injected in the network forery good network connectivity may decide to serve as su-
searching. In addition, we measure the response time of fernodes. Typically, these users have a much larger number
searching, i.e. the maximum time it takes for the query w@f neighbors; in the Gnutella network for example the average
complete. More specifically we use the following metrics: user has 4-6 network connections, whereas a supernode may
Median and Mean number of distinct peers discovered (hitgonnect to 20-30 other peers and in many cases have even
Searching algorithms should maximize the median and meawore neighbors. Also, a common pattern that appears in every
number of distinct peers. The median is a more robust metrimstructured communication network is the clusterness of the
since, in topologies with large irregularities in the degrees, itispology. The existence of these clusters has been shown
possible to measure relatively large mean values because fewgreatly affect the performance of various communication
searches may reach a very large number of users and incrdasetions in these networks, including searching [1], [25].
the mean value. There are other parameters that may affect the performance
Minimum, Maximum, and Standard Deviation of the number of searching, including the dynamic nature of the topologies,
hits. A large minimum value is important in order to guarantethat have been studied elsewhere and which we ignore in this
that the algorithm will have a good worst case performancgtudy.
The range between the minimum and the maximum valuesWe will use the following synthetic topologies to compare
relates to the variation of the performance of the algorithrthe searching algorithms. Currently, there are limited real
The variation is measured using the standard deviation. We bleta for operational peer-to-peer networks mainly due to the
lieve that algorithms with larger minimum values and smallatifficulty in collecting such topological information.
variation are preferable. Random d-regular GraphsExtensive analytical work has
Number of message&ood searching schemes strive to minshown that random d-regular graphs have good properties,
imize the number of messages used to discover as muebluding low diameter, good connectivity (i.e. there are no
information as possible. In order to perform a fair comparisariusters of nodes), small second eigenvalue, and good con-
of the different searching algorithms we require that they useictance. We will use d-regular random graphs as a canonical
the same number of messages. Since it is difficult to configuredel of a well connected network. Topologies generated with
the parameters of each algorithm to guarantee the exact saha# model will serve as baseline for comparisons. Moreover,
number of messages, we require that the expected numbethef topologies of third generation peer-to-peer networks, like
messages used in each experiment is approximately the s@it€orrent, that use a centralized server to control how the
for all algorithms. topology is formed, may be more accurately modeled by well
Granularity of number of messageshis is a qualitatively connected topologies.
and not quantitative metric. In flooding based algorithms Rower Law GraphsMany seemingly complex networks, in-
is difficult to control the parameters of the algorithm, usuallgluding the Internet at the AS level, the Web Graph, and
the time-to-live, to use a pre-specified number of messageany others, have been shown to be characterized by power-
for searching. Linear increases in the TTL result usually laws. Most typically the degrees of the nodes of the network
exponential increases in the number of messages. AlgorithfoBow a power-law. The power-law is usually characterized by
with finer granularity are preferable since the user can contilparameten called the powerlaw exponent, which relates to
the number of messages to reach an adequate number of ugerprobability of observing nodes of high degree according to
(hoping to find enough copies of an item), but, still, not floothe formulaPr [degree > x] ~ 1/2*. We use topologies with
the entire network. A =1.4,2.0,2.4,3.0. [4], [5] characterize the performance of
Response tim&Ve also measure the maximum running time dbok ahead for power-law topologies. Far= 3.0 the largest
each algorithm. In this study we assume a very simple discretiegree in 1M nodes graph is less than 100, which brings the
time model. Each node receives queries from its neighbors gratameters close to real peer-to-peer networks.
at the same time processes them and forwards copies of Bimodal topologiesAlong the lines of Sectiofi Il we assume
queries, if necessary, to its neighbors. The latter queries wililat there are two types of nodes in the network. Few nodes are
be received at the next unit of time. For all our schemes dbnnected to a large number of other nodes and, thus, they are
is easy to compute the running time of the algorithm, or arery important for the operation of the network. Such nodes,
upper bound of it. For example, the searching time for floodinghich are typically called ultra-peers, are connected to the
with TTL 7 is 7. Despite the fact that we do not model manynternet through high-speed links and thus they can afford to
important parameters that affect the searching time, like foonnect to have many neighbors. The rest of the users have
example propagation and queuing delays, we believe that dew neighbors. In our experiments in a 250K node graph we
definition of running time can be used to judge the relatideave used 500 nodes of degree 500.
performance of the different algorithms. Clustered topologiesWe assume that there are clusters of
2) Topologies: We are interested in studying the perforusers with very good connectivity inside each cluster. The
mance of the searching algorithms in networks with irregulanumber of links between clusters are limited. In particular,
ities in the node degrees and in networks with clustered noidemost of the experiments, we assume that the network is



composed of a small number of clusters, and each cluster
is a 3-regular random graph. Typical values are networks of
20 clusters of 10K nodes each, and 100 random connections
between each pair of clusters. 10'f ’
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B. Normalized Flooding 210}

In this section we verify the results of Sector Il and compare
the performance of normalized flooding to standard flooding.
Both schemes perform similarly in regular topologies. How- ol
ever, when the topology contains nodes with high degrees,
which is common in large unstructured communication net- 10}
works, the normalization allows flooding to scale better. T
With normalization it is easier to control how many nodes
will be reached by the flooding, thus, allowing, searching &tg. 2. Number of unique peers discovered as a function of the initial time-to-

a finer granularity (but still the number of nodes increasd¥e: In the case of normalized flooding the number of unique peers increases
exponentially with the TTL, and, moreover, the increase is predictable and

exponential with the .initial TTL). I_n TabIE] I-A we give Fhe consistent for all nodes. In the case of regular flooding, the increase is much
mean number of unique peers discovered as a function fafter and depends on the node that initiates the flooding.

the initial time-to-live for four topologies of 250K nodes.
We observe that in regular topologies standard flooding and
normalized flooding behave similarly. In the other topologiei® increase the TTL. Since the increase of the horizon is more
however, which contain nodes of high degree, the increagedictable and can be roughly computed by either knowing
in the number of peers is very fast (verifying Theorgm 3.2§he properties of the topology or by measuring the increase in
after the search reaches a high degree node, increasingtfigehorizon when the TTL increases, it is easy to configure
TTL by 1 or 2 will result in discovering a large part of thethe value of TTL in order to reach at least a pre-specified
network. This tremendous increase, however, comes at the ddgnber of nodes. Despite the fact that the increase in the
of reduced efficiency in the searching process (see Thble I-Bprizon and in the messages is more predictable, it is still
A large number of messages reach already discovered nodponential. Later, we describe searching methods that allow
On the other hand, with normalized flooding (Theorierm 3.3ner granularity in controlling the number of messages.
we have more control on the number of messages generated ) L
and, moreover, higher searching efficiency. Indeed, evenQn Evaluation of 1-step replication
topologies with nodes of high degree, normalized floodirigeplication of one step is a practical way to improve the
behaves similarly to searching in regular graphs. performance of searching by allowing each node to answer
Normalized flooding behaves better than standard floodiqgeries on behalf of its neighbors. This advantage comes at
with respect to other metrics that are not shown in Thpble I. Ftre cost of replicating information about the content of the
example the standard deviation (normalized by dividing witheighbors, but, this cost is paid once when a new neighbor
the mean) is much smaller (up to 4 times) with normalizeafrives and is amortized over a large number of messages
flooding (observe that the standard deviation is of interest that go through the node. This scheme is particularly effective
the cases that the searching has not reached all the nodben there are nodes of high degree in the network, as
of the network for all starting nodes). This indicates that thexplained in Sectiofi T\. Visiting the nodes of large degree,
performance is more concentrated around the mean, and, tlauns] at the same time their neighbors, guarantees that a large
is less dependent of the starting node. Similar observatigpartion of the network has been covered.
exist for other metrics of interest, like the minimum number The performance of searching in networks of 250K nodes
of nodes discovered. with normalized flooding and with random walks both with
Moreover, the number of peers discovered as a function afid without 1-step replication is given in Tallg Il. This
the initial time-to-live follows a more predictable behaviortable validates Theorenjs #.2 and]4.3. In Tgbje Il we report
in contrast, without normalization there is a sharp jump ithe average number of unique peers discovered, but similar
the number of peers discovered after few high-degree noddsservations are given for the other statistics, like the standard
are discovered. In Figurg] 2 we plot the number of nodeviation and the minimum number of peers discovered.
visited by the flooding as a function of the initial time-to-live. Compare Tablg ]I with Tablg I. In the case of regular graphs
The straight line in the case of normalized flooding indicatesrmalized flooding with 1-step replication and TTlbehaves
that the horizon of the search increases exponentially. Whesry similarly to normalized flooding with TTLr + 1. In
searching in regular graphs we observe similar behavior. Witkgular graphs random walks with 1-step replication perform
flooding without normalization, the increase in topologies withetter than floodings (in the worst case 20-30%).
nodes of high degrees is faster than exponential. The advantage of 1-step replication becomes clear in graphs
Observe that in order to discover the same number of nodeish large degrees, like the power-law graphs and the bimodal
with normalized flooding as with standard flooding, we neegtaph of Tablg 1. The number of hits significantly improved
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TABLE |
PERFORMANCE AND EFFICIENCY OF FLOODING AND NORMALIZED FLOODING

A. Average number of unique peers discovered (F: Flooding, NF: Normalized Flooding). B. Average efficiency of searching (unique peers over messages).

TTL Regular Bimodal Power-Law\ = 1.4 Power-Lawx = 2.2 T Regular Bimodal io‘ﬁe'iLzW :’_O\Aier;agw
2 ; N’; 370F3 l;“; 28, 216F5 1’(\)“:9 106i 1’(\)”:) F NP F NP £ NP F NF
. . T an ) ) . 2 1.00 1.00 1.00 1.00 0.97 0.99 1.00 1.00

3 21 21 28,463.5 24.9 177,192.9 321 1,4419 27.0
3 1.00 1.00 0.84 1.00 0.42 0.99 1.00 1.00

4 45 45 126,581.9 58.5 247,700.5 87.4 12,633.6 67.7
4 1.00 1.00 0.63 1.00 0.13 0.98 0.96 1.00
5 93 93 212,759.4 133.6 249,993.2 231.9 62,480.5 161.4 5 1.00 1.00 0.46 0.99 011 0.96 082 100
6 188.9 188.9 244,392.6 297.2 249,999 610.6 165,543.6 389.6 6 1'00 1‘00 0'37 0.98 0'11 0'94 0.56 1'00
7 380.7 380.7 249,635.0 661.7 249,999 1,594.1 238,522.0 930.1 7 1'00 1'00 0'34 0.96 0'11 0'92 0'33 1'00
8 763.9 763.9 249,991.4 1,422.8 249,999 4,122.4 249,807.9 2,197.1 8 1'00 1'00 0'34 0'93 0'11 0.88 0'25 0'99
9 1,528.7 1,528.7 249,999 3,014.8 249,999 10,430.9 249,999 5,194.6 9 1'00 1'00 0'34 0.87 0'11 0.82 0'25 0.98
10 3,051.0 3,051.0 249,999 6,212.4 249,999 24,599.3 249,999 11,953.9 10 1.00 100 034 0.82 0.11 0.74 0.25 0.96

Note: Observe the more gradual increase in the number of peers discovered and the more gradual and slow decrease of efficiency when normalized flooding
is used. This indicates better granularity when using normalized flooding compared to using regular flooding.

TABLE I TABLE Il
PERFORMANCE OF SEARCHING WITHL-STEP REPLICATION PERFORMANCE TOPOLOGIES ORLM NODES.
TTL Regular Birv?(;d,\;?rma"é(e)sv:—ol_oa%\‘/ngd Power-Law 2.2 Clustered - A Powe_r—IaW graph Wltm — 20
2 21 11504 30,2195 162.3 329 Metric Flooding | Random-Walk RW-look
3 45 2,580.5 56,629.5 419.1 743 ahead,r =92
5 weo | osso | 1o 2603 | a7 Median | 12,652.50| 24,692.50 | 26,097.00
: a0 | asrize | 1sa7re woses | 16780 Mean 2177331\ 2469432 | 28616.97
8 1,528.7 87,841.0 176,396.6 23,414.3 32116 Min 281 24,457 13,859
9 3,051. . . R .
10 Soesa | laoi0s | 22am1a0 7066 | 1vas2 Max 393,040 24,930 71,167
Bre-processing | 750,000 | 990,852 2,446,674 1,265,536 | 1,019,500 Std 42,876.55 87.17 10,605.26
TTL Regular BimodBaI F% 1.4 Power-Law 2.2 Clustered Zo'th perc. 996 247495 14'972
2 301 8130 26,649.7 1334 %52 Messages 32,640 32,640 32,851
3 69.1 1,905.0 55,776.0 407.5 55.3 TTL 4 _ 2
4 148.2 4,030.1 91,807.4 972.3 127.4
5 304.1 8,730.9 113,002.1 2,190.5 270.5 Time 4 32,640 430
7 1oms | es0 | 1s1o6at wo7i6a | 13470 B. 6-Regufar random graph
8 24846 | 67,627.9 174,907.1 20,4425 2,961.0 Metric Flooding | Random-Walk RW-look
9 4,948.0 108,043.0 199,615.3 38,695.5 6,388.4 ahead’T =9
10 9,806.2 139,712.5 222,433.2 69,877.1 13,678.1 .
Pre-processing | 750,000 990,852 2,446,674 1,265,536 | 1,019,500 Median 17,668.50 17,620.00 16,285.50
Note: (1) In the case of Random Walks (Table B) the TTL column indicates m_ean 1103?'3652 117622913 1?5255;?;0
that the random walker is using the same number of messages as if performing in , , ,
normalized flooding with that TTL. (2) Comparing to Tal@fe I, we observe Max 19,989 17,816 17,098
that 1-step replication increased the performance of searching via normalized Std 1,477.91 73.48 296.20
flooding substantially for the same number of messages. 20-th perc| 13,238 17.453 15.667
Messages 22,386 22,386 22,656
TTL 6 - 2
compared to not using 1-step replication (Tgfle 1). The main Time 6 22,386 2,152

reason is that both methods, flooding and random walksgte: In the RW-look ahead method, the number of samples between
quickly discover the nodes of high degree and through thetyfcessive floodings is 4.
discover a large portion of the nodes in the network. In

the cases of graphs with large degrees the performance of ) . _
normalized flooding is better than random walk (in the wor@€€rs discovered to performing a long random walk without
case by approximately 20%): on the other hand, in topologi@é’kahead’_bm' the response time is much smaller. (See also
with clusters, random walks perform slightly better. [19] for a different application of lookahead 2.)

In all cases the preprocessing to implement 1-step repli

R . . . "E. Edge criticality and searching with weights
tion is given in the last line of Tab[e]ll. This cost is amortlzef?i1 g Y g g

over a large number of queries. In Table[T] we give some statistics of the performance of
] . generalized searching in topologies with clusters. This is ex-
D. Evaluation of random walk with lookahead perimental validation of Sectidn]V. We study the performance

An extension of the previous scheme is to perform a shat generalized searching for different methods of assigning the
random walk with shallow local floodings, of TTE = 2 on weights on the edges. The weights depend on the number of
every step (or, every few steps). We call this random watke shortest hop paths that go through each link. Recall that we
with lookahead. Since we do not think that it is realistido not compute all the shortest paths, but, instead, sample by
to maintain replicas of your neighbors’ neighbors, therefommputing shortest-paths for a subset of the nodes (2% of the
we charge the algorithm for all the messages generated rimdes). Since it is possible that the sampling does not cover
both the random walk and the local flooding. In Table Il wall edges, we assign a value of one to each uncovered edge.
show the performance of random walk with lookahead 2 The relative weight that a node assigns to its incident edges
in a regular graph and in power-law graph with few largdepends on the number of shortest-hop paths that use these
degrees. The main observation is that the performance of #ages. Assuming that is this ratio, then, in Tablg Iv, we
random walk with lookahead is similar in terms of uniquexperiment with different assignments of the weights that are
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proportional to various powers of that ratid. By increasing search scheme and we believe it may become of use in
the poweri, we increase the priority we give to the criticaldifferent networking contexts, such as sensor and ad-hoc
edges, and, as indicated in the table, the performance networks. To implement generalized searching we also need
searching increases. Increasing the power biases the searcpmagtical heuristics to assign edge weights that use little, and
towards the direction that leads to the boundary nodes apdeferable passive, network measurements.
subsequently, to other clusters. Of course, increasing the power
i beyond a certain point reduces the performance (the process ACKNOWLEDGMENTS
degenerates into oscillations between clusters). This work is funded by NSF ITR-0220343.

In regular graphs without clustering, generalized searching
performs similarly to standard flooding.
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TABLE IV

PERFORMANCE OF GENERALIZED SEARCHING FOR VARIOUS ASSIGNMENTS OF EDGE CRITICALITY

Method Min Mean Median Max Std | Mean Response Timeg
Proportional 12,869 | 17,276.30 | 17,236.0 | 21,523 | 1,453.9 8.1
Quadratic 16,054 | 21,036.31| 21,194.0 | 23,143 | 1,061.6 10.9
Cubic 18,236 | 22,248.79 | 22,386.0 | 23,292 623.8 14.0
Fifth power 20,037 | 22,398.52 | 22,453.0 | 22,997 296.1 20.7
Tenth power 19,581 | 21,494.50 | 21,515.5| 22,049 236.8 36.7
Flooding with TTL 6 | 10,410 | 16,377.83 | 15,595.5| 30,859 | 3,223.2 6
Random Walk 20,034 | 20,328.72 | 20,330.0 | 20,591 84.8 28,026
Uniform Sampling 24,252 | 24,439.99 | 24.441.5| 24,615 50.4 1

Note: The average number of messages in all cases is equal to 28,026. Twd, liake l» receive budget proportional to the ratio of the number of shortest hop paths going

through them in the case of proportional sharing. In the cases of quadratic, cubic, and tenth power the allocation of the budget is proportional to the second, the third, and the tenth

power of the ratio respectively.
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