Correlation Clustering with a Fixed Number of Clusters

loaNNIS GIOTIS* VENKATESAN GURUSWAMI*f

Abstract

We continue the investigation of problems concerning correlation clustering or clustering with quali-
tative information, which is a clustering formulation that has been studied recently [5, 7, 8, 3]. The basic
setup here is that we are given as input a complete graph on n nodes (which correspond to nodes to be
clustered) whose edges are labeled + (for similar pairs of items) and — (for dissimilar pairs of items).
Thus we have only as input qualitative information on similarity and no quantitative distance measure
between items. The quality of a clustering is measured in terms of its number of agreements, which is
simply the number of edges it correctly classifies, that is the sum of number of — edges whose endpoints
it places in different clusters plus the number of + edges both of whose endpoints it places within the
same cluster.

In this paper, we study the problem of finding clusterings that maximize the number of agreements,
and the complementary minimization version where we seek clusterings that minimize the number of
disagreements. We focus on the situation when the number of clusters is stipulated to be a small
constant k. Our main result is that for every k, there is a polynomial time approximation scheme
for both maximizing agreements and minimizing disagreements. (The problems are NP-hard for every
k > 2.) The main technical work is for the minimization version, as the PTAS for maximizing agreements
follows along the lines of the property tester for Max k-CUT from [13].

In contrast, when the number of clusters is not specified, the problem of minimizing disagreements
was shown to be APX-hard [7], even though the maximization version admits a PTAS.

1 Introduction

In this work, we investigate problems concerning an appealing formulation of clustering called correlation
clustering or clustering using qualitative information that has been studied recently in several works, in-
cluding [6, 17, 5, 7, 8, 3, 2, 4]. The basic setup here is to cluster a collection of n items given as input only
qualitative information concerning similarity between pairs of items; specifically for every pair of items, we
are given a (Boolean) label as to whether those items are similar or dissimilar. We are not provided with any
quantitative information on how different pairs of elements are, as is typically assumed in most clustering
formulations. These formulations take as input a metric on the items and then aim to optimize some func-
tion of the pairwise distances of the items within and across clusters. The objective in our formulation is to
produce a partitioning into clusters that places similar objects in the same cluster and dissimilar objects in
different clusters, to the extent possible.

An obvious graph-theoretic formulation of the problem is the following: given a complete graph on n
nodes with each edge labeled either “+” (similar) or “—” (dissimilar), find a partitioning of the vertices into
clusters that agrees as much as possible with the edge labels. The maximization version, call it MAXAGREE,
seeks to maximize the number of agreements: the number of + edges inside clusters plus the number of —
edges across clusters. The minimization version, denoted MINDISAGREE, aims to minimize the number of
disagreements: the number of — edges within clusters plus the number of + edges between clusters.

In this paper, we study the above problems when the maximum number of clusters that we are allowed
to use is stipulated to be a fixed constant k. We denote the variants of the above problems that have this

*Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195.
{giotis,venkat}@cs.washington.edu
TResearch supported in part by NSF Career Award CCF-0343672.

constraint as MAXAGREE[k] and MINDISAGREE[k]. We note that, unlike most clustering formulations, the
MAXAGREE and MINDISAGREE problems are not trivialized if we do not specify the number of clusters k
as a parameter — whether the best clustering uses few or many clusters is automatically dictated by the
edge labels. However, the variants we study are also interesting formulations, which are well-motivated in
settings where the number of clusters might be an external constraint that has to be met, even if there are
“better” clusterings (i.e., one with more agreements) with a different number of clusters. Moreover, the
existing algorithms for, say MINDISAGREE, cannot be modified in any easy way to output a quality solution
with at most k clusters. Therefore k-clustering variants pose new, non-trivial challenges that require different
techniques for their solutions.

In the above description, we have assumed that every pair of items is labeled as + or — in the input. In a
more general variant, intended to capture situations where the classifier providing the input might be unable
to label certain pairs of elements are similar or dissimilar, the input is an arbitrary graph G together with +
labels on its edges. We can again study the above problems MAXAGREE[k] (resp. MINDISAGREE[k]) with
the objective being to maximize (resp. minimize) the number of agreements (resp. disagreements) on edges
of E (that is, we do not count non-edges of G as either agreements or disagreements). In situations where
we study this more general variant, we will refer to these problems as MAXAGREE[k] on general graphs and
MINDISAGREE[k] on general graphs. When we don’t qualify with the phrase “on general graphs”, we will
always mean the problems on complete graphs.

Our main result in this paper is a polynomial time approximation scheme (PTAS) for MAXAGREE[K]
as well as MINDISAGREE[k] for k > 2. We now discuss prior work on these problems, followed by a more
detailed description of results in this paper.

1.1 Previous and related work

The above problem seems to have been first considered by Ben-Dor et al. [6] motivated by some compu-
tational biology questions. Later, Shamir et al. [17] studied the computational complexity of the problem
and showed that MAXAGREE (and hence also MINDISAGREE), as well as MAXAGREE[k] (and hence also
MINDISAGREE[k]) for each k > 2 is NP-hard. They, however, used the term “Cluster Editing” to refer to
this problem.

Partially motivated by some machine learning problems concerning document classification, Bansal,
Blum, and Chawla [5] also independently formulated and considered this problem. In particular, they
initiated the study of approximate solutions to MINDISAGREE and MAXAGREE, and presented a PTAS for
MAXAGREE and a constant factor approximation algorithm for MINDISAGREE (the approximation guaran-
tee was a rather large constant, though). They also noted a simple factor 3 approximation algorithm for
MINDISAGREE[2]. Charikar, Guruswami and Wirth [7] proved that MINDISAGREE is APX-hard, and thus
one cannot expect a PTAS for the minimization problem similar to the PTAS for MAXAGREE. They also
gave a factor 4 approximation algorithm for MINDISAGREE by rounding a natural LP relaxation using the
region growing technique. Recently, Ailon et al [2] presented an elegant combinatorial factor 3 approxima-
tion algorithm with a clever analysis for MINDISAGREE; they also get a factor 5/2 approximation using LP
techniques on top of their basic approach.

The problems on general graphs have also received attention. It is known that both MAXAGREE and
MINDISAGREE are APX-hard [5, 7]. Using a connection to minimum multicut, several groups [7, 11, 12]
presented an O(logn) approximation algorithm for MINDISAGREE. In fact, it was noted in [12] that the
problem is as hard to approximate as minimum multicut (and so this logn factor seems very hard to
improve). For the maximization version, algorithms with performance ratio better than 0.766 are known for
MAXAGREE [7, 18]. The latter work by Swamy [18] shows that a factor 0.7666 approximation can also be
achieved when the number of clusters is specified (i.e., for MAXAGREE[k] for k > 2).

Another problem that has been considered, let us call it MAXCORR, is that of maximizing correlation,
defined to be the difference between the number of agreements and disagreements. A factor O(logn) ap-
proximation for MAXCORR on complete graphs is presented in [16, 8], and an O(log#(G)) approximation
is presented in [3] for general graphs G, where 6(-) is the Lovdsz Theta Function. Alon et al [3] showed an
integrality gap of Q(logn) for the standard semidefinite program relaxation for MAXCORR (the largest such

integrality gap for a graph is called the Grothendieck constant of the graph — thus these results establish
the Grothendieck constant of the complete graph on n vertices to be ©(logn)). Very recently, Arora et al [4]
proved a factor log® n inapproximability result for the weighted version of MAXCORR for some « > 0.

1.2 Our results

The only previous approximation for MINDISAGREE[k] was a factor 3 approximation algorithm for the case
k =2 [5]. The problems were shown to be NP-hard for every k£ > 2 in [17] using a rather complicated reduc-
tion. In this paper, we will provide a much simpler NP-hardness proof and prove that both MAXAGREE|k]
and MINDISAGREE[k] admit a polynomial time approximation scheme for every k > 2.1 The existence of
a PTAS for MINDISAGREE[k]| is perhaps surprising in light of the APX-hardness of MINDISAGREE when
the number of clusters is not specified to be a constant (recall that the maximization version does admit a
PTAS even when k is not specified).

It is often the case that minimization versions of problems are harder to solve compared to their com-
plementary maximization versions. The APX-hardness of MINDISAGREE despite the existence of a PTAS
for MAXAGREE is a notable example. The difficulty in these cases is when the optimum value of the mini-
mization version is very small, since then even a PTAS for the complementary maximization problem need
not provide a good approximation for the minimization problem. In this work, we first give a PTAS for
MAXAGREE[k]. This algorithm uses random sampling and follows closely along the lines of the property
testing algorithm for Max k-Cut due to [13]. We then develop a PTAS for MINDISAGREE[k], which is our
main result. This requires more work and the algorithm returns the better of two solutions, one of which is
obtained using the PTAS for MAXAGREE[k].

The difficulty in getting a PTAS for the minimization version is similar to that faced in the problem of
Min k-sum clustering, which has the complementary objective function to Metric Max k-Cut. We remark
that while an elegant PTAS for Metric Max k-Cut due to de la Vega and Kenyon [10] has been known for
several years, only recently has a PTAS for Min k-sum clustering been obtained [9]. We note that the case
of Min 2-sum clustering though was solved in [14] soon after the Metric Max Cut algorithm of [10], but the
case k > 2 appeared harder. Similarly to this, for MINDISAGREE[k], we are able to quite easily give a PTAS
for the 2-clustering version using the algorithm for MAXAGREE[2], but we have to work harder for the case
of k > 2 clusters. Some of the difficulty that surfaces when k > 2 is detailed in Section 4.1.

In Section 5, we also note some results on the complexity of MAXAGREE[k] and MINDISAGREE[k]| on
general graphs — these are easy consequences of connections to problems like Max CUT and graph col-
orability.

Our work seems to nicely complete the understanding of the complexity of problems related to correlation
clustering. Our algorithms not only achieve excellent approximation guarantees but are also sampling-based
and are thus simple and quite easy to implement.

2 NP-hardness of MINDISAGREE and MAXAGREE

In this section we show that the exact versions of problems we are trying to solve are NP-hard. An NP-
hardness result for MAXAGREE on complete graphs was shown in [5]; however their reduction crucially relies
on the number of clusters growing with the input size, and thus does not yield any hardness when the number
of clusters is a fixed constant k. It was shown by Shamir, Sharan, and Tsur [17], using a rather complicated
reduction, that these problems are NP-hard for each fixed number k > 2 of clusters. We will provide a short
and intuitive proof that MINDISAGREE[k] and MAXAGREE[k] are NP-hard.

Clearly it suffices to establish the NP-hardness of MINDISAGREE[k] since MAXAGREE[k] can be easily
reduced on a complimentary graph. We will first establish NP-hardness for k = 2, the case for general k
will follow by a simple “padding” with (k — 2) large collection of nodes with + edges between nodes in each
collection and — edges to everywhere else.

1Our approximation schemes will be randomized and deliver a solution with the claimed approximation guarantee with high
probability. For simplicity, we do not explicitly mention this from now on.

Theorem 1 MINDISAGREE|[2] on complete graphs is NP-hard.

Proof: We know that Graph Min Bisection, namely partitioning the vertex set of a graph into two equal
halves so that the number of edges connecting vertices in different halves is minimized, is NP-hard. From
an instance G of Min Bisection with n(even) vertices we obtain a complete graph G’ using the following
polynomial time construction.

Start with G and label all existing edges of G as + edges in G’ and non-existing edges as — edges. For
each vertex v create an additional set of n vertices. Let’s call these vertices together with v, a “group” V,,.
Connect with 4 edges all pairs of vertices within V,,. All other edges with one endpoint in V,, are labeled as
— edges (except those already labeled).

We will now show that any 2-clustering of G’ with the minimum number of disagreements, has 2 clusters
of equal size with all vertices of any group in the same cluster. Consider some optimal 2-clustering W with
2 clusters Wy and W5 such that |Wy| # |[Wa]| or not all vertices of some group are in the same cluster. Pick
some group V,, such that not all its vertices are assigned in the same cluster. If such a group cannot be found,
pick a group V,, from the larger cluster. Place all the vertices of the group in the same cluster obtaining W’
such that ||W{| — |W3|| is minimized.

Let’s assume that V! vertices of group V, were in W; and V.2 in Wy. Wlog, let’s assume that W’ is
obtained by moving the V,! group vertices in cluster Ws.

W] =W\ V), Wy =W UV}

We now observe the following facts about the difference in the number of disagreements between W’ and

w.

e Clearly the number of disagreements between vertices not in V,, and between one vertex in V.2 with
one in W{ remains the same.

e The number of disagreements is decreased by |V,}| - |V.2| based on the fact that all edges within V,, are
+ edges.

e It is also decreased by at least |V,!| - [W]| — (n — 1) based on the fact that all but at most n — 1 edges
connecting vertices of V,, to the rest of the graph are — edges.

e The number of disagreements increases at most |V,}| - [Ws \ V2| because (possibly) all of the vertices
in V! are connected with — edges with vertices in Wy outside their group.

Overall, the difference in the number of disagreements is at most |V,}|- |[Wa \ V2| — [V,1|- [V2| = |V} - W] |+
(n —1). Notice that since ||W{| — |W3]|| was minimized it must be the case that |W{| > |W5 \ V,2|. Moreover
since a group has an odd number of vertices and the total number of vertices of G’ is even, it follows that
|Wi| # |[Wa \ V2| and |W]| — W2 \ V2| > 1. Therefore the total number of disagreements increases at most
(n—1)—|V.H|-(|[V2|+1). Since |V,}|+|V.2| = n+1 and V,! cannot be empty, it follows that |V,}|-(|[V2|+1) > n
and the number of disagreements strictly decreases contradicting the optimality of W.

Therefore the optimal solution to the MINDISAGREE[2] instance has 2 clusters of equal size and all
vertices of any group are contained in a single cluster. It is now trivial to see that an optimal solution to
the Min Bisection problem can be easily derived from the MINDISAGREE[2] solution which completes the
reduction. [|

We are now able to easily derive the following NP-hardness result.

Theorem 2 For every k > 2, the problems MAXAGREE[k] and MINDISAGREE[k] on complete graphs are
NP-hard.

Proof: Consider an instance of the MINDISAGREE[2] problem on a graph G with n vertices. Create a
graph G’ by adding to G, k — 2 “groups” of n + 1 vertices each. All edges within a group are marked as +
edges, while the remaining edges are marked as — edges.

Algorithm MaxAg(k,e):

Input: A labeling £ : (3) — {+, —} of the edges of the complete graph on vertex set V.
Output: A k-clustering of the graph, i.e., a partition of V into (at most) k parts Vi, Va, ..., V4.

1. Construct an arbitrary partition of the graph into roughly equal parts, (V*,V2,... . V™), m =[]
2. For i = 1...m, choose uniformly at random with replacement from V' \ V" a subset S* of size
r=0 (E% log %) _ _ .
3. For each clustering of all the sets S* into (S7,...,S}) do
(a) For i = 1...m do the following
(i) For each vertex v € V* do
(1) For j=1...k, let
55(0) = [(0) 1 83] + 1y [0 (0) 1 5,
(2) Place v in cluster argmax;3;(v).
(b) If the current clustering has more agreements than the currently stored one, store it.
4. Output stored clustering.

Figure 1: MaxAg(k,¢) algorithm

Consider now a k-clustering of G’ such that the number of disagreements is minimized. It is easy to see
that all the vertices of a group must make up one cluster. Also observe that any of the original vertices
cannot end up in one group’s cluster since that would induce n + 1 disagreements, strictly more than it
could possibly induce in any of the 2 remaining clusters. Therefore the 2 non-group clusters are an optimal
2-clustering of G. The theorem easily follows.]

3 PTAS for maximizing agreement with &k clusters

In this section we will present a PTAS for MAXAGREE[k] for every fixed constant k. Our algorithm follows
closely the PTAS for Max k-CUT by Goldreich et al.[13]. In the next section, we will present our main
result, namely a PTAS for MINDISAGREE[k], using the PTAS for MAXAGREE[k] together with additional
ideas.?

Theorem 3 For every k > 2, there is a polynomial time approzimation scheme for MAXAGREE[k].

Proof: We first note that for every k& > 2, and every instance of MAXAGREE[k], the optimum number
OPT of agreements is at least n?/16. Let ny be the number of positive edges, and n_ = (g) — n4 be the
number of negative edges. By placing all vertices in a single cluster, we get n; agreements. By placing
vertices randomly in one of k clusters, we get an expected (1 — 1/k)n_ agreements just on the negative
edges. Therefore OPT > max{n, (1 — 1/k)n_} > (1 — 1/k)(3)/2 > n?/16. The proof now follows from
Theorem 4 which guarantees a solution within additive en? of OPT for arbitrary £ > 0. []

Theorem 4 Oninpute, § and a labeling L of the edges of a complete graph G with n vertices, with probability
at least 1—6, algorithm MaxAg outputs a k-clustering of the graph such that the number of agreements induced
by this k-clustering is at least OPT —en?/2, where OPT is the optimal number of agreements induced by any

k-clustering of G. The running time of the algorithm is n - O (e log(k/(c0))) |

The proof of this theorem is presented in Section 3.2, and we now proceed to describe the algorithm in
Figure 1.

2This is also similar in spirit, for example, to the PTAS for Min 2-sum clustering based on the PTAS for Metric Max
CUT [14, 10].

3.1 Overview.

Our algorithm is given a complete graph G(V, E) on n vertices. All the edges are marked as + or —, denoting
whether adjacent vertices are on agreement or disagreement respectively. For a vertex v, let I'"(v) be the
set of vertices adjacent to v via + edges, and I'~ (v) the set of vertices adjacent to v via — edges.

The algorithm works in m = O(1/¢) steps. At each step we are placing ©(en) vertices into clusters. We
will show that with constant probability our choices of .S;’s will allow us to place the vertices in such a way
that the decrease in the number of agreements with respect to an optimal clustering is O(g?n?) per step,
thus the algorithm outputs a solution that has O(en?) less agreements than any optimal solution.

3.2 Performance analysis of MaxAg(k,c) algorithm.

Consider an arbitrary optimal k-clustering of the graph D = (D1,..., D). We consider the subsets of each
cluster over our partition of vertices, defined as

forj=1,...k, D} = D;nV’
D' = (Di,...,Di)
Let’s also call the clustering output by our algorithm W = (W7, ..., W}) and define in the same fashion.
forj=1,...k, W/ = W,nV*
who= (Wi, W)

We will now define a sequence of hybrid clusterings, such that hybrid clustering H?, for i = 1,2,...,m + 1,
consists of the vertices as clustered by our algorithm up to (not including) the i’th step and the rest of the
vertices as clustered by D.

H' = (Hi,...,H})

Ho= (M M)
forj=1,...k H = (U_{W})u (D}
forj=1,...k, Hy = H\V’

Since we are going through all possible clusterings of the random sample sets S?, for the rest of the
analysis consider the loop iteration when the clustering of each S* exactly matches how it is clustered in H?,
ie., for j =1,2,...,k, we have sz‘_ =5N H; Of course, taking the overall best clustering can only help us.

The following lemma captures the fact that our random sample with high probability gives us a good
estimate on the number of agreements towards each cluster for most of the vertices considered.

Lemma 5 For i = 1...m, with probability at least 1 — (5/4m) on the choice of S*, for all but at most an
/8 fraction of the vertices v € V', the following holds for j = 1,...k,

3

<3 (1)

T (v)N SJ’| B [T (v) ﬂH;ﬂ|
r VAV

(Note that if (1) above holds, then it also holds with T~ (v) in place of T+ (v).)

Proof: Consider an arbitrary vertex v € V* and the randomly chosen set S® = {uy,...,u,}. For each
je€{l,...,k}, we define the random variables

J

; + i
fori=1,...r, o} = 1, lf“ler) NS5;;
’ ’ 0, otherwise.

. +(v A
Clearly >;_; o} = [T (v) N S| and Prlol = 1] = %

Using an additive Chernoff bound we get that

*(v)nsi T (v)NHE
Pr H r (T)ﬂsﬂ _ [P (w)nHS]

VAV

> 3—2} <2 exp(—2(5)%r) < g2

Defining a random variable to count the number of vertices not satisfying inequality(1) and using Markov’s
inequality we get that for that particular j, inequality(1) holds for all but a fraction /8 of vertices v € V',
with probability at least 1 — (6/4mk). Using a probability union bound the lemma easily follows.]

We define agree(A4) to be equal to the number of agreements induced by k-clustering A. Now consider
the placement of V' vertices in clusters W7,..., W} as performed by the algorithm during step i. We will
examine the number of agreements compared to the placement of the same vertices under H' (placement
under the optimal clustering), more specifically we will bound the difference in the number of agreements
induced by placing vertices differently than H?. The following lemma formalizes this concept.

Lemma 6 Fori=0,...m, we have agree(H™') > agree(D) — i - $e?n?
Proof: Observe that H' = D and H™+t! = W. The only vertices placed differently between H*t! and
H' are the vertices in V*. Suppose that our algorithm places v € V? in cluster and v is placed in cluster
2’ under H®. For each vertex v the number of agreements towards clusters other than z,z’ remains the
same, therefore we will focus on the number of agreements towards these two clusters and the number of
agreements within V.

The number of agreements we could lose by thus misplacing v is

diff o (v) = [TT(v) NHL | — T (v) NHL| 4 [T (v) NHE| — [T (v) NHE |
Since our algorithm chose cluster x, by construction
T () N Sg| + 07 () NSy | = [T (v) NS5[+ 07 (v) NS (2)

If inequality (1) holds for vertex v, using it for I'" (v) and T'~(v) in both clusters x,z’, we obtain bounds on
the difference of agreements between our random sample’s clusters S, S7, and the hybrid clusters H.,, H.,.
Combining with inequality (2) we get that diffy,/(v) is at most gen. Therefore the total decrease in the

number of agreements by this type of vertices is at most é5n|Vi\ < %5%2.

By Lemma 5 there are at most (¢/8)|V*| vertices in V* for which inequality (1) doesn’t hold. The total
number of agreements originating from these vertices is at most %5|Vi|n < %6%2. Finally, the total number
of agreements from within V; is at most |[V*|?> < %5%2.

Overall the number of agreements that we could lose in one step of the algorithm is at most %5%2 < %52n2.

The lemma follows by induction.]

The approximation guarantee of Theorem 4 easily follows from Lemma 6. We need to go through all
possible k-clusterings of our random sample sets, a total of k™" loop iterations. The inner loop (over i) runs
m times, and each of those iterations can be implemented in O(nr) time. The claimed running time bound
of our algorithm thus follows.]

4 PTAS for minimizing disagreements with & clusters

This section is devoted to the proof of the following theorem, which is our main result in this paper.
Theorem 7 (Main) For every k > 2, there is a PTAS for MINDISAGREE[k].

The algorithm for MINDISAGREE[k] will use the approximation scheme for MAXAGREE[k] as a subroutine.
The latter already provides a very good approximation for the number of disagreements unless this number
is very small. So in the analysis, the main work is for the case when the optimum clustering is right on most
of the edges.

4.1 Idea behind the algorithm.

The case of 2-clusters turns out to be lot simpler and we use it to first illustrate the basic idea. By the PTAS
for maximization, we only need to focus on the case when the optimum clustering has only OPT = ~n?
disagreements for some small v > 0. We draw a random sample S and try all partitions of it, and focus on
the run when we guess the right partition S = 57 U .S, namely the way some fixed optimal clustering D
partitions S. Since the optimum has a very large number of agreements, there must exist a set A of size at
least (1 — O(y))n such that each node in A has a clear choice of which side it prefers to be on. Moreover, for
each node in A, we can find out its choice correctly (with high probability) based on edges connecting it to
nodes in the sample S. Therefore, we can find a clustering which agrees with D on a set A of at least 1—O(~)
fraction of the nodes. We can then go through this clustering, and for each node in parallel, switch it to the
other side if that improves the solution to produce the final clustering. Nodes in A won’t get switched and
will remain clustered exactly as in the optimum D. The number of extra disagreements compared to D on
edges amongst nodes in V '\ A is obviously at most the number of those edges which is O(y*n?). For edges
connecting a node u € V'\ A to nodes in A, since we placed u on the “better” side, and A is placed exactly
as in D in the final clustering, we can have at most O(yn) extra disagreements per node compared to D (this
is the error introduced by the edges to the misplaced nodes in V '\ A). Therefore we get a clustering with at
most OPT + O(y?n?) = (1 + O(v))OPT disagreements.

Our k-clustering algorithm for k£ > 2 uses a similar high-level approach, but is more complicated. The
main thing which breaks down compared to the k& = 2 case is the following. For two clusters, if D has
agreements on a large, i.e. (1 — O(y)), fraction of edges incident on a node w (i.e. if u € A in the above
notation), then we are guaranteed to place u exactly as in D based on the sample S (when we guess its correct
clustering), since the other option will have much poorer agreement. This is not the case when k& > 2, and
one can get a large number of agreements by placing a node in say one of two possible clusters. Therefore,
it does not seem possible to argue that each node in A is correctly placed, and then to use this to finish off
the clustering.

However, what we can show is that nodes in A that are incorrectly placed, call this set B, must be in
small clusters of D, and thus are few in number. Moreover, every node in A that falls in one of the large
clusters that we produce, is guaranteed to be correctly placed. (These facts are the content of Lemma 10.)
The nodes in B still need to be clustered, and even a small additional number of mistakes per node in
clustering them is more than we can afford. We get around this predicament by noting that nodes in B and
A\ B are in different sets of clusters in D. It follows that we can cluster B recursively in new clusters (and
we are making progress because B is clustered using fewer than k clusters). The actual algorithm must also
deal with nodes outside A, and in particular decide which of these nodes are recursively clustered along with
B.

With this intuition in place, we now proceed to the formal specification of the algorithm that gives a
factor (14 ¢) approximation for MINDISAGREEk] in Figure 2. We will use a small enough absolute constant
¢1 in the algorithm; the choice ¢; = 1/20 will work.

4.2 Performance analysis of the algorithm.

We now analyze the approximation guarantee of the above algorithm. We need some notation. Let A =
AjUA,U- - - Ay, be any k-clustering of the nodes in V. Define the function val : V' — [0, 1] as follows: val(u)
equals the fraction of edges incident upon node u whose labels agree with clustering A (i.e., we count negative
edges that are cut by A and positive edges that lie within the same A, for some 7). Also define disagr(.A) to
be the number of disagreements of A w.r.t. labeling L. (Clearly disagr(A) = 2323 (1 — val(u)).) For
anodeu € Vand 1 <i <k, let A" denote the clustering obtained from .4 by moving u to A; and leaving
all other nodes untouched. We define the function pval™ : V x {1,2,...,k} — [0,1] as follows: pvaIA(u,i)
equals the fraction of edges incident upon u that agree with the clustering A%,

In the following, we fix D to be any optimal k-clustering that partitions V as V. = Dy U Dy U --- U Dy,.
Let v be defined to be disagr(D)/n? so that the clustering D has yn? disagreements w.r.t. the input labeling
L.

Algorithm MinDisAg(k,¢):
Input: A labeling £ : () — {+, —} of the edges of the complete graph on vertex set V = {1,2,...,n}
Output: A k-clustering of the graph, i.e., a partition of V into (at most) k parts V1, Va,..., V4.

0. If £ =1, return the obvious 1-clustering.

1. Run the PTAS for MAXAGREE[k] from previous section on input £ with accuracy =7k
Let ClusMax be the k-clustering returned.
2. Set 3 = 3. Pick a sample S C V by drawing 512%" vertices u.a.r with replacement.
. ClusVal = 0; /* Keeps track of value of best clustering found so far*/
4. For each partition S of S as Sy U Sy U---U Sy, perform the following steps:
(a) Initialize the clusters C; = S; for 1 <14 < k.
(b) For each u € V'\ S
(i) For each i = 1,2, ..., k, compute pval®(u,), defined to be 1/|S| times the number of
agreements on edges connecting u to nodes in S if u is placed in cluster i along with S;.

w

(i) Let j, = arg max;pval® (u,4), and val® (u) & pval® (u, 7).
(iii) Place u in cluster C; , i.e., C;, = C;, U{u}.
(c¢) Compute the set of large and small clusters as
Large={j |1 <j <k, |Cj| > 3} and Small = {1,2,...,k} \ Large.
Let [= |Large| and s = k — [= |[Small|. /* Note that s < k. */

(d) Cluster W def U C; into s clusters using recursive call to algorithm MinDisAg(s,/3).

j€Small ~'J
Let the clusteriilg output by the recursive call be W =W, UWJU---UW!
(where some of the W/’s may be empty)
(e) Let C be the clustering comprising of the k clusters {C;} crarge and {W/ }1<i<s.
If the number of agreements of C is at least ClusVal, update ClusVal to this value, and
update ClusMin =C.

5. Output the better of the two clusterings ClusMax and ClusMin.

Figure 2: MinDisAg(k,e) algorithm

Call a sample S of nodes, each drawn uniformly at random with replacement, to be a-good if the nodes
in S are distinct® and for each u € V and i € {1,2,...,k},

Ipval® (u, i) — pval® (u,1)| < o (3)

for the partition S of S as U¥_,S; with S; = S N D; (where pva|§(~, -) is as defined in the algorithm). The
following lemma follows by a standard Chernoff and union bound argument similar to Lemma 5.4

Lemma 8 The sample S picked in Step 2 is -good with high probability (at least 1 — O(1/y/n)).

Therefore, in what follows we assume that the sample S is f-good. In the rest of the discussion, we
focus on the run of the algorithm for the partition S of S that agrees with the optimal partition D, i.e.,
S; = SN D;. (All lemmas stated apply for this run of the algorithm, though we don’t make this explicit in
the statements.) Let (Cy,Cy,...,C)) be the clusters produced by the algorithm at end of Step 4(c) on this
run. Let’s begin with the following simple observation.

Lemma 9 Suppose a node u € Dy is placed in cluster C, at the end of Step 4(b) forr # s, 1 <r, s <k.
Then pval® (u,r) > pval® (u, s) — 23 = val® (u) — 2.

3Note that in the algorithm we draw elements of the sample with replacement, but for the analysis, we can pretend that S
consists of distinct elements, since this happens with high probability.

4Since our sample size is Q(logn) as opposed to O(1) that was used in Lemma 5, we can actually ensure (3) holds for every
vertex w.h.p.

Proof: Note that since u € Dy, val®(u) = pval®(u,s). By the 3-goodness of S (recall Inequality (3)),
pvalg(u7s) > pval®(u,s) — 3. Since we chose to place u in C, instead of Cs, we must have pvalg(u,r) >
pvalg(u,s). By the [-goodness of S again, we have pvaID(u,r) > pvalg(u,r) — 3. Combining these three
inequalities gives us the claim of the lemma.]

Define the set of nodes of low value in the optimal clustering D as Tjow & {u|val®(u) <1—c;/k?}. The
total number of disagreements is at least the number of disagreements induced by these low valued nodes,
therefore
2k*disagr(D) 2k*yn? < 4k%yn

Tiow| < _
Tioul < (n—1)cy m—1Den = @

(4)
The following key lemma asserts that the large clusters produced in Step 4(c) are basically correct.

Lemma 10 Suppose v < 16k3 Let Large C {1,2,...,k} be the set of large clusters as in Step 4(c) of the
algorithm. Then for each i € Large, C; \ Tiow = D; \ Tiow, that is w.r.t. nodes of large value, C; precisely
agrees with the optimal cluster D;.

Proof: Let i € Large be arbitrary. We will first prove the inclusion C; \ Tiow € D; \ Tiow. Suppose this
is not the case and there exists u € C; \ (D; U Tiow). Let u € D; for some j # i. Since u ¢ Tjow, we have
val® (u) > 1—¢; /k?, which implies pval® (u, j) > 1—c; /k*. By Lemma 9, this gives pval® (u, i) > 1—¢; /k*—20.
Therefore we have

|[Dil + |Dj| — 1

201 —eci1/k?—B) < pval®(u,i) + pval®(u,j) < 2 — -

where the last step follows from the simple but powerful observation that each edge connecting u to a vertex
in D; U D, is correctly classified in exactly one of the two placements of u in the 7’th and j’th clusters (when
leaving every other vertex as in clustering D). We conclude that both

\D||D\<2(+0)n+1. (5)

What we have shown is that if u € C; \ (D; U Tiow), then u € D; for some j with |D;| < 2(c1/k* + 8)n + 1.
It follows that |C; \ (D; U Tiow)| < 2(c1/k + Bk)n + k. Therefore,

n 4k:2'yn
0> | _ k>
|D;| > |Ci| = [Tiowl (+ Bk)n — k > 2% o (k‘

+ Bk — k> 2(5L 4 Bm+ 1

k2
where the last step follows since v < 1545, K > 2, ¢1 = 1/20, and 3 is tiny. This contradicts (5), and so we
conclude C; \ Tiow € D; \ Tiow-

Now for the other inclusion D; \ Tiow C C; \ Tiow- If a node v € D; \ (C; U Tiow) is placed in C, for g # i,
then a similar argument to how we concluded (5) establishes |D;| < 2(7% 4)n + 1, which is impossible since

we have shown D; 2 C; \ Tiow, and hence |D;| > |Ci| — |Tiow| > 55 — 4]“017” 2(7% + B)n + 1, where the last

step follows using v < 1&3 and k > 2 for the choice ¢; = 1/20. [|

The next lemma states that there is a clustering which is very close to optimum which agrees exactly with
our large clusters. This will enable us to find a near-optimal clustering by recursing on the small clusters to
recluster them as needed, exactly as our algorithm does.

Lemma 11 Assume v <
satisfies the following:

16k3 There exists a clustering F that partitions V as V = Fy U Fy U - -- Fy, that

(i) F; = C; for every i € Large

(i) The number of disagreements of the clustering F is at most disagr(F) < yn (1 + 4k2 (

2k »y))

10

Proof: Suppose w € Ty is such that w € C,., w € Dg with r # s. Consider the clustering formed from
D by performing the following in parallel for each w € Tioy: If w € C, and w € Dy for some r # s, move
w to D,. Let F = Fy U---U F} be the resulting clustering. By construction F; N Tiew = C; N Tjow for all ¢,
1 <4 < k. Since we only move nodes in Ty, clearly F; \ Tiow = D; \ Tiow for 1 < i < k. By Lemma 10,
Ci\Tiow = D; \ Tiow for i € Large. Combining all these equalities we conclude that F; = C; for each i € Large.

Now the only extra edges that the clustering F can get wrong compared to D are those incident upon
nodes in T, and therefore

disagr(F) — disagr(D) < (n — 1) Z (val® (w) — val” (w)) (6)

WE Tow

If a node w belongs to the same cluster in F and D (i.e., we did not move it), then since no node outside
Tiow is moved in obtaining F from D, we have

val” (w) > val® (w) — |Tiow|/(n — 1) . (7)

If we moved a node w € Tjy, from Dy to D,., then by Lemma 9 we have pvalD (w,r) > vaID(w) —203. Therefore
for such a node w

val (w) > pval®(w,r) — |Tiow|/(n — 1) > val® (w) — 28 — |Tiew|/(n — 1) . (8)

Combining (6), (7) and (8), we can conclude disagr(F) — disagr(DP) < (n — 1)|Tiow| (283 + %) The claim
now follows using the upper bound on |Tje,| from (4) (and using n?/(n —1)? < 2). [

Lemma 12 If the optimal clustering D has yn? disagreements for v < T6ks, then the clustering ClusMin
found by the algorithm has at most yn?(1 +¢/3)(1 + 4k?B/c1 + 8k*y/c?) disagreements.

Proof: We note that when restricted to the set of all edges except those entirely within W, the set of
agreements of the clustering C in Step 4(e) coincides precisely with that of F. Let n; be the number of
disagreements of F on edges that lie within W and let ny be the number of disagreements on all other edges.
Since W is clustered recursively, we have the number of disagreements in C is at most ny + nq(1 +¢/3) <
(n1 +n2)(1 4 ¢/3). The claim follows from the bound on 1y + ng from Lemma 11, Part (ii). [|

Theorem 13 For every € > 0, algorithm MinDisAg(k,e) delivers a clustering with number of disagree-
ments within a factor (14 ¢€) of the optimum.

Proof: Let OPT = yn? be the number of disagreements of an optimal clustering. The solution ClusMax
2.2 2 2.2
returned by the maximization algorithm has at most OPT + S0 = yn? (1 + 362,:42) disagreements. The

32k7
solution ClusMin has at most yn?(1 +/3)(1 4 4k?3/cy + 8k*v/c})) disagreements. If v > %, the former

is within (1 + €) of the optimal. If v < 352654 (which also satisfies the requirement v < ¢1/16k® we had in
Lemma 12), the latter clustering ClusMin achieves approximation ratio (1 +¢/3)(1 +¢/2) < (1 +¢) (recall

that 8 < 15z). Thus the better of these two solutions is always an (1 + ¢) approximation.]

To conclude Theorem 7, we examine the running time of MinDisAg. Step 4 will be run for k!5l =
nOKk*/e*) jterations. During each iteration, the placement of vertices is done in O(nlogn) time. Finally,
observe that there is always at least one large cluster, therefore the recursive call is always done on at most
(k — 1) clusters. It follows that the running time of MinDisAg(k,¢) can be described from the recurrence
T(k,e) < no(’“4/€2)(n logn+-T'(k—1,¢/3)) from which we derive that the total running time is bounded by
nOO*/=*) 1og n.

11

5 Complexity on general graphs

So far, we have discussed the MAXAGREE[k] and MINDISAGREE[k] problems on complete graphs. In this
section, we note some results on the complexity of these problems when the graph can be arbitrary. As we
will see, the problems become much harder in this case.

Theorem 14 There is a polynomial time factor 0.878 approximation algorithm for MAXAGREE[2] on general
graphs. For every k > 3, there is a polynomial time factor 0.7666 approzimation algorithm for MAX AGREE[k]
on general graphs.

Proof: The bound for 2-clusters case follows from the Goemans-Williamson algorithm for Max CUT mod-
ified in the obvious way to account for the positive edges. The bound for k > 3 is obtained by Swamy [18]
who also notes that slightly better bounds are possible for 3 < k < 5.]

We note that in light of the recent hardness result for Max CUT [15], the above guarantee for MAXAGREE|2]
is likely the best possible.

Theorem 15 There is a polynomial time O(y/logn) approzimation algorithm for MINDISAGREE[2] on
general graphs. For k > 3, MINDISAGREE[k| on general graphs cannot be approzimated within any finite
factor.

Proof: The bound for 2-clustering follows by the simple observation that MINDISAGREE[2] on general
graphs reduces to Min 2CNF Deletion, i.e., given an instance of 2SAT, determining the minimum number of
clauses that have to be deleted to make it satisfiable. The latter problem admits an O(y/logn) approximation
algorithm [1]. The result on MINDISAGREE[k] for k& > 3 follows by a reduction from k-coloring. When k > 3,
it is NP-hard to tell if a graph is k-colorable, and thus even given an instance of MINDISAGREE[k] with only
negative edges, it is NP-hard to determine if the optimum number of disagreements is zero or positive. R

References

[1] A. Agarwal, M. Charikar, K. Makarychev, and Y. Makarychev. O(y/logn) approximation algorithms for
Min Uncut, Min 2CNF deletion, and directed cut problems. In Proceedings of the 37th ACM Symposium
on Theory of Computing (STOC), pages 573-581, 2005.

[2] N. Ailon, M. Charikar, and A. Newman. Aggregating Inconsistent Information: Ranking and Clustering.
In Proceedings of the 87th Annual ACM Symposium on Theory of Computing (STOC), pages 684-693,
2005.

[3] N. Alon, K. Makarychev, Y. Makarychev, and A. Naor. Quadratic forms on graphs. In Proceedings of
the 87th ACM Symposium on Theory of Computing (STOC), pages 486-493, 2005.

[4] S. Arora, E. Berger, E. Hazan, G. Kindler, and S. Safra. On non-approximability for quadratic programs.
In Proceedings of the 46th IEEE Symposium on Foundations of Computer Science (FOCS), 2005.

[5] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learning, Special Issue on
Clustering, 56:89-113, 2004.

[6] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns. J Comp. Biol., 6:281-97,
1999.

[7] M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualitative information. Journal of Com-
puter and System Sciences, 71(3):360-383, October 2005.

[8] M. Charikar and A. Wirth. Maximizing quadratic programs: extending Grothendieck’s inequality. In
Proceedings of the 45th IEEE Symposium on Foundations of Computer Science (FOCS), pages 5460,
2004.

12

[9]

[10]

[11]

[12]

[13]

W. Fernandez de la Vega, M. Karpinski, C. Kenyon, and Y. Rabani. Approximation schemes for
clustering problems. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing
(STOC), pages 50-58, 2003.

W. Fernandez de la Vega and C. Kenyon. A randomized approximation scheme for metric max-cut. In
Proceedings of the 39th IEEE Symposium on Foundations of Computer Science (FOCS), pages 468-471,
1998.

E. Demaine and N. Immorlica. Correlation clustering with partial information. In Proc. of 6th APPROX,
pages 1-13, 2003.

D. Emanuel and A. Fiat. Correlation clustering—minimizing disagreements on arbitrary weighted
graphs. In Proc. of 11th ESA, pages 208-20, 2003.

O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and approxi-
mation. Journal of the ACM, 45(4):653-750, July 1998.

P. Indyk. A sublinear-time approximation scheme for clustering in metric spaces. In Proceedings of the
40th IEEE Symposium on Foundations of Computer Science (FOCS), pages 154-159, 1999.

S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results for Max Cut
and other 2-variable CSPs. In Proceedings of the 45th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 146-154, 2004.

A. Nemirovski, C. Roos, and T. Terlaky. On maximization of quadratic form over intersection of
ellipsoids with common center. Mathematical Programming, 86(3):463-473, 1999.

R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. In Proc. of 28th Workshop
on Graph Theory (WG), pages 379-90, 2002.

C. Swamy. Correlation Clustering: Maximizing agreements via semidefinite programming. In Proc. of
15th SODA, pages 519-20, 2004.

13

