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ABSTRACT
We introduce a novel game that models the creation of
Internet-like networks by selfish node-agents without cen-
tral design or coordination. Nodes pay for the links that
they establish, and benefit from short paths to all destina-
tions. We study the Nash equilibria of this game, and prove
results suggesting that the “price of anarchy” [4] in this con-
text (the relative cost of the lack of coordination) may be
modest. Several interesting extensions are suggested.
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1. INTRODUCTION
The Internet is the first computational artifact that was not
designed by one economic agent, but emerged from the dis-
tributed, uncoordinated, spontaneous interaction (and self-
ish pursuits) of many. Today’s Internet consists of over
12,000 subnetworks (“autonomous systems”), of different
sizes, engaged in various, and varying over time, degrees
of competition and collaboration.

The Internet is also the first object studied by computer
scientists that must be approached with humility and puz-
zlement, and studied by measurement, experiments, and the
development of models and falsifiable theories — very much
like the cell, the universe, the brain, and the market.
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Because the Internet is the product of — and an arena for
— the interaction of many economic agents, it may not be
optimized in any conventional sense. How costly is this lack
of coordination? In Theoretical Computer Science, we have
in the past confronted such questions by developing research
frameworks based on ratios: the approximation ratio mea-
sures the cost of the lack of tractability; the competitive ra-
tio, the cost of information (often in a distributed setting).
In [4], it was proposed that the ratio of the social costs of
the worst-case Nash equilibrium and the social optimum,
the so-called price of anarchy, may be an informative mea-
sure of the lack of coordination in situations in which agents
interact by pursuing each their own interest.

The concept of Nash equilibrium is in some sense the ana-
log of centralized optimal design in the context of multiple
distributed selfish agents. But it is not without its concep-
tual and practical problems. The concept is declarative (as
opposed to algorithmic), providing no guidance on how it
can be reached (besides some weak and unconvincing con-
vergence results); it is also delightfully and intriguingly non-
deterministic (due to the existence of multiple Nash equilib-
ria), something explored and delimited in the current line of
work.

Since [4], there has been much progress in understanding
the price of anarchy in more and more general situations,
in which individual users choose routes selfishly, and suffer
from the created congestion [5, 7, 1, 6]. In the Internet,
however, users do not choose routes; the situation is much
more complex. Routes are chosen by the interaction of pack-
ets with routers, users adjust their usage to the resulting
congestion, while autonomous systems add bandwidth and
hardware to the resulting hot spots. Can this much more
complex situation be illuminated as successfully as the con-
gestion game? What is the price (in both hardware costs and
quality of service) of the Internet’s open architecture?

In this paper we propose a simple game-theoretic model of
network creation. The agents are nodes, and their strategy
choices create an undirected graph. Each node chooses a
(possibly empty) subset of the other nodes, and lays down
edges to them. The edges are undirected, in that, once in-
stalled, they can be used in both directions, independently
of which node paid for the installation. The union of these
sets of edges is the resulting graph. (The union may not be
disjoint; that is, it may be that an edge is paid for by both



of its endpoints. However, this obviouly will never be the
case at equilibrium.)

The cost to each node of such a combination of choices has
two components: the total cost of the edges laid down by
this node (the number of edges times a constant α > 0,
the only parameter in this model), plus the sum of the dis-
tances from the node to all others. Our game tries to cap-
ture aspects of the Internet related to autonomous systems
peering and otherwise agreeing to communicate. Each such
agreement may be costly, but pays off in quality of service
improvements. That is, our model takes into account both
hardware costs and quality of service costs; however, for the
latter it ignores congestion, the focus of much other work.

What are the (pure) Nash equilibria of this game, and how
do they compare to the social optimum (the combination
of strategies with smallest sum of costs)? (It follows easily
from our results that the game does have pure equilibria.)

For small values of α (under 2) the situation is fairly straight-
forward: the social optimum is the clique, and the star is the
worst Nash equilibrium. The worst-case “price of anarchy”
is then 4

3
(see Section 2).

For α > 2, the plot thickens. The star is always the social
optimum (Section 2), and there is a lower bound of 3 − ε
for the price of anarchy (Theorem 2). As for upper bounds,
we prove that the price of anarchy is O(

√
α) (Theorem 1).

This is the best general upper bound that we have.

In our constructions, as well as our experiments, we have
almost always come up with Nash equilibria that are trees.
The only known exception that remains an equilibrium for
α > 2 (and even then, only for α ≤ 4), the Petersen graph,
is a transient1 equilibrium. For α ≤ 2, experiments yield
a wide variety of non-tree equilibria, but Theorem 1 guar-
antees that the price of anarchy of all of these is at most
constant. (Incidentally, our experiments are hindered by
the fact that computing the best response in this game is
NP-hard, Proposition 1.)

These considerations have led us to formulate the tree con-
jecture, stating that, for α above some constant A, all Nash
equilibria are trees. Finally, we show (Theorem 3) that any
tree Nash equilibrium is less than 5 times more costly than
the social optimum — hence, under the tree conjecture, the
price of anarchy (for non-transient equilibria) is at most a
constant, dependent only on A.

Despite its simplicity, our model may be a useful analytical
tool for shedding light on the complex processes that create
the topology and other reality of the Internet. For example,
our analysis can be seen as justifying the prominence of the
star and the clique as important primitives in the study of

1 By transient, we mean a weak Nash equilibrium (i.e.
one in which at least one player can change his strategy
without affecting his payoff), from which there exists a se-
quence of single-player strategy changes which do not alter
the changer’s payoff leading eventually to a non-equilibrium
position. For the Petersen graph, there are several such
chains, all leading to positions from which all further chains
of single-player changes strictly beneficial to the changer
lead to a tree.

the Internet topology. We also outline in the last section
several extensions that may make the model a little more
realistic, while being still tractable in interesting ways.

The Model
The game we consider has players {0, 1, . . . , n − 1} — we
denote this set by [n]. The strategy space of player i is the

set Si = 2[n]−{i}. Given a combination of strategies s =
(s0, . . . , sn−1) ∈ S0× . . .×Sn−1, we consider the graph G[s],
the underlying undirected graph of G0[s] = ([n],∪n−1

i=0 ({i}×
si)). The cost incurred by player i under s is defined to be

ci(s) = α · |si|+
n−1∑
j=0

dG[s](i, j),

where dG[s](i, j) is the distance between nodes i and j in the
graph G[s].

A (pure) Nash equilibrium in this game is an s such that,
for each player i, and for all s′ that differ from s only in the
ith component, ci(s) ≥ ci(s

′).

One may try to discover Nash equilibria by starting from
one strategy combination and repeatedly replacing a player’s
strategy by its best response. The following is cautionary in
this regard:

Proposition 1. It is NP-hard, given s ∈ S0× . . .×Sn−1

and i ∈ [n], to compute the best response of i.

Sketch: Reduction from dominating set.

Player i is given the configuration of the rest of the graph,
including the edges coming in, and has to pick a subset of
vertices such that when the edges to them are built, ci is
minimized. For any 1 < α < 2, if there are no incoming
edges, the strategy is a dominating set for the rest of the
graph, since the diameter of G must be at most 2, and mak-
ing more than the minimum number of links would only
improve the distance term of ci by 1. Hence the costs are
minimized (and the utility maximized) when the size of the
subset is minimized.

2. BASIC RESULTS
The social cost is simply the sum of all players’ costs, which,
for any situation where no connection is paid for by both
endpoints (a constraint satisfied by all Nash equilibria), is:

C(G) =
∑

i

ci = α|E|+
∑
i,j

dG(i, j).

Since every pair of vertices that is not connected by an edge
is at least distance 2 apart, the following is a lower bound
for the social cost:

C(G) ≥ α|E|+ 2|E|+ 2(n(n− 1)− 2|E|)
= 2n(n− 1) + (α− 2)|E|. (1)



This bound is achieved by any graph of diameter at most 2.

When α < 1, by Eq. 1, the social optimum is achieved when
|E| is maximum. Therefore it is the complete graph. Any
Nash equilibrium has to be2 of diameter 1, which implies
that the complete graph is also the only Nash equilibrium.

When 1 ≤ α < 2, the social optimum is still achieved for the
complete graph (even though it is no longer a Nash equilib-
rium). Any Nash equilibrium is of diameter at most 2, so
the social cost is exactly equal to that in equation 1. It is
worst when |E| is minimum, which is n− 1 for a connected
graph. Thus the worst Nash equilibrium is the star. The
price of anarchy is then:

C(star)

C(Kn)
=

(n− 1)(α− 2 + 2n)

n(n− 1)(α−2
2

+ 2)

=
4

2 + α
− 4− 2α

n(2 + α)

<
4

2 + α
≤ 4

3

When α ≥ 2, the social optimum is achieved for minimum
|E|, so it’s the star. The star is also a Nash equilibrium, but
there may be worse Nash equilibria.

3. AN UPPER BOUND
Observe that if α > n2 the Nash equilibrium is a tree, be-
cause, unless the distance to a node is infinity, a player has
no interest in building an edge. In that case, the price of
anarchy is trivially O(1).

Theorem 1. For α < n2 the price of anarchy for our
model is O(

√
α).

Proof. The price of anarchy is:

ρ(G) = Θ

(
α|E|+

∑
i,j dG(i, j)

αn + n2

)

Notice that dG(i, j) < 2
√

α for every i and j, since other-
wise i would connect to j to make itself closer to all nodes
more than half way to j along the shortest path from i to j.

Therefore it suffices to prove that |E| = O( n2
√

α
).

Consider the edges out of vertex v: e1, e2, . . . , el. For any
edge we will count vertices u for which (v, u) is not in the
graph. In other words, we will associate several non-edges
with each edge. Ideally, we want the ratio of the number of
edges to the number of non-edges to be 1 :

√
α.

Let Ti = {u ∈ V : the shortest path from v to u goes through
ei }. We ensure that Ti are disjoint by considering a canon-
ical shortest path for each vertex. Before edge ei was built,
the alternative shortest path from v to u ∈ Ti was either

2Note that here, and at several points throughout, we rely
on the fact that any Nash equilibrium cannot be missing
edges whose addition would reduce the sum inter-node dis-
tances by more than α, which follows immediately from the
definition of the cost function.

infinity or < 2 ∗ diam(G) < 4
√

α (where diam(G) denotes
the diameter of G). We consider these two cases separately.

If Ti and v are connected in G′ = (V, E− ei), then for every
u ∈ Ti

dG′(v, u)− dG(v, u) < 4
√

α.

The total improvement is
∑

u∈Ti
(dG′(v, u)− dG(v, u)) ≥ α.

This implies that |Ti| = Ω(
√

α). So we found Ω(
√

α) ver-
tices, such that (u, v) is not an edge. Such non-edges will be
counted at most twice (from both sides).

If Ti and v are not connected in G′ then G′ has two compo-
nents and we can count |Ti|−1+|V −Ti|−1 = n−2 = Ω(

√
α)

non-edges – those incident on v or w and the other compo-
nent, where ei = (v, w). These are also counted at most
twice.

This completes the proof that the number of edges is O( 1√
α
)

of the total number of vertex pairs, and the proof of the
theorem.

4. A LOWER BOUND
Theorem 2. For any ε > 0, there exists a Nash equilib-

rium of the network game with the price of anarchy greater
than 3− ε.

Proof. For any k ≥ 4, d ≥ 2, consider the family of
complete k-ary directed trees of depth d, Tk,d, with all edges
going from parent nodes to their children. Let n be the
number of nodes in Tk,d, and set, with foresight, α = (d −
1)n.

Lemma 1. Tk,d is a Nash equilibrium of the network game.

Proof. Every non-leaf node i must link at least once to
the subtree of each of its children; else the graph becomes
disconnected, which would carry an infinite penalty for ci.
If only one link is made to a particular child’s subtree (i.e.
the set of the child’s descendants, including the child itself),
it is clearly optimal for it to link to the child directly — link-
ing to a grandchild’s subtree brings the node closer to that
subtree but further away from the child and at least three
other grandchildren’s subtrees, thus strictly increasing the
distance term. This makes the total contribution of that
subtree to the distance term of ci be at most (d − 1)n/k,
since the subtree contains at most n/k nodes, and they are
all at most d−1 hops from the node we’re examining. Since
creating 2 or more links to that subtree would require an
additional cost of (d − 1)n, but would not increase the dis-
tance from our node to any other by more than d − 1, that
will not happen.

Every non-root node i, at depth δ ≥ 1, is already connected
to all nodes outside its subtree via a link from its parent.
Note that (1) if such a node links to the root, it will become
closer to every other node by no more than δ−1, for a total
possible savings of no more than (d − 1)(n − 1); and (2) if
such a node links to a child of its parent (its sibling), it will
become closer to every other node by no more than 1, for a
total savings of no more than n − 1. Consider some other
node j which is not a descendant of i (addressed above) and



not its parent (trivially wasteful to link to). Let j0 be the
sibling of i which is an ancestor of j, or root, if there is no
such sibling3; then the simple path j0, j1, . . . , jx = j passes
through no node linked to i. We know that the savings from
linking to j0 are strictly less than α — now simply note that
the savings from linking to jy+1 are even less than those from
linking to jy, since i is brought closer by 1 to the nodes in
jy+1’s subtree, and moved further by 1 from the nodes in the
subtrees of at least 2 other children of jy (the ones that are
the ancestors of neither j nor i, and hence do not have any
shorter paths to i). Inductively, the savings from linking to
j are strictly less than α as well. Furthermore, since making
any one extra link alone is not worth it, making more than
one cannot be worthwhile either, since the net savings in
the distance component are no greater than the sum of the
savings yielded by adding any link alone. Since none of the
edges i is paying for can be removed either, Tk,d is a Nash
equilibrium.

The total cost of the social optimum (the star, for sufficiently
high values of d and n) is α(n − 1) + 2n(n − 1) = (d +
1)n(n − 1). By counting distances between leaves alone,
which number at least n(k − 1)/k, we get C(Td,k) ≥ α(n −
1)+2d(n(k−1)

k
−1)2. Thus, limk,d→∞ ρ(Td,k) = limd→∞((d−

1)n(n− 1) + 2d(n− 1)2)/((d + 1)n(n− 1)) = 3.

5. THE TREE CONJECTURE
Numerous experiments and attempted constructions for α >
2 have thus far only yielded Nash equilibria that are trees,
with the sole exception of the Petersen graph, which is a
transient equilibrium for 1 ≤ α ≤ 4. Furthermore, it is
somewhat intuitive to suppose that non-tree equilibria are
less likely to appear as alpha grows and redundant links
become costlier4. We thus postulate the following:

Conjecture 1 (The Tree Conjecture). There ex-
ists a constant A, such that for all α > A, all non-transient
Nash equilibria are trees.

Armed with this conjecture, we can exploit the structure
of trees to obtain a constant upper bound on the price of
anarchy.

Theorem 3. For any tree Nash equilibrium T , ρ(T ) < 5.

Proof. Let n be the number of nodes in T , and, for a
node i, let L(i) be the set of nodes which forms the largest
connected component of the graph obtained if i and all edges
adjacent to it are removed — these components are hereafter

3Note that this includes the case when i and j share a non-
root ancestor other than a parent.
4Note that, for a position to be a Nash equilibrium, there
must be no single node with a different strategy that lowers
its costs, no matter how different that strategy is from its
current strategy. E.g., it may at first appear that a directed
n-cycle for n ≥ 5 (i.e. a situation where node i links to i+1
only, with n− 1 linking to 0), is a Nash equilibrium. This is
not the case, since node 0 would lower its costs if it instead
linked to node 2 only.

referred to as i’s subtrees. An arbitrary one is chosen for
L(i) if there is more than one subtree of i of the maximum
size. We first note that T has at least one center node z — a
node such that |L(z)| ≤ n/2. This may be seen by starting
at an arbitrary node z0, and following a sequence of nodes
z0, z1, . . . until a center is reached; zi is obtained from (non-
center) zi−1 by following the edge between zi−1 and L(zi−1).
If we consider the subtrees of zi, all but the one containing
zi−1 will be strict subsets of L(zi−1), while the subtree con-
taining zi−1 will be the complement of L(zi−1) and, since
|L(zi−1)| > n/2, will contain at most n/2 nodes. Hence,
|L(zi)| ≤ max{n/2, |L(zi−1)| − 1}, which clearly guarantees
that the sequence will eventually reach a center node.

Let d ≥ 2 be the depth of T when rooted at z (if d = 1,
we have a star, for which the theorem holds trivially). That
is, some leaf l at depth d chose not to link to z. Since
the subtree of z within which l lies contains at most n/2
nodes, there are at least n/2−1 nodes such that paths from
l to them go through z. Thus a link from l to z would
yield a savings of at least (d − 1)(n/2 − 1) for cl. Hence,
α ≥ (d− 1)(n/2− 1).

The diameter of T is at most 2d, so diam(T ) < 2+4α/(n−2).
Then, since 2(n − 1) ordered pairs of nodes are at distance
1 from each other,

−C(T ) ≤ α(n− 1) +

(
2 +

4α

n− 2

)
(n− 2)(n− 1)+

+ 2(n− 1) = 5α(n− 1) + 2(n− 1)2.

(2)

Thus, the price of anarchy is

ρ(T ) ≤ 5α(n− 1) + 2(n− 1)2

α(n− 1) + 2n(n− 1)
< 5

.

From Theorem 1 and Theorem 3, we directly obtain:

Corollary 4. If the Tree Conjecture holds for some value
of A, then for all non-transient Nash equilibria G, ρ(G) =

O(
√

A).

It should be noted that the above proof relies crucially on the
existence of a “center” node, which seems to be the primary
barrier to extending the proof to more general graphs.

Note also that the non-transience constraint in the conjec-
ture and the consequent results is optional, as we have not
found even transient non-tree equilibria for α > 4. It is in-
cluded above because it weakens the conjecture and seems
to provide a more natural notion of an equilibrium.

6. DISCUSSION AND EXTENSIONS
We would love, of course, to see a proof of the Tree Con-
jecture, as well as any other constant upper bound for the
price of anarchy.

There are some interesting variations on our model that may
be worthy of study:



• In our model, edges paid for by a node can be used by
others. In the directed version an edge paid by i can
only be used in the direction from i to j. The equilibria
in this model are much more complex and numerous,
although this variant seems to be less applicable to real
situations.

• In our model, a node must either pay for an edge in
full, or not at all (and hope that the other endpoint
will decide to pay for it). In the fractional model, a
node may pay for a fraction of an edge, and the edge
will exist if the sum of the two fractions exceed one
(naturally, at equilibrium this sum will be either zero
or one). This model may allow for a greater variety of
equilibria.

• Stars (even though prevalent in the real Internet) are
problematic networks because of congestion. It would
be interesting to introduce this consideration to our
model; the challenge again is, in doing so, to keep it
relatively tractable.

• We assume that all pairs of nodes have the same traffic,
weighing distances between all node pairs equally. A
more detailed model would use a traffic matrix [tij ] ≥
0, and the term dG(s)(i, j) of cost function would be
multiplied by tij .

• The previous extension uses n2 parameters, a little too
many. In the rank-one special case we assume that
tij = wi ·wj , where wi are node weights capturing the
strength (or importance, or market share) of the nodes.
It would be very interesting to identify ways in which
the weights affect the degrees of the nodes at equilib-
rium; such an approach may shed light to phenomena
of heavy-tailed distributions recently observed [2] (it
would be a much more primitive assumption, consis-
tent with experience from other markets, to postulate
that the weights are so distributed).

• With our colleague Kunal Talwar, we have been con-
sidering a network creation game in which node costs
reflect Vickrey payments — a proposal from [3]. The
nature of the equilibria of such a game could explain
the modest Vickrey overcharges observed in the real
Internet in [3].

• A more realistic model would assume a large but not
infinite cost to i when j is disconnected from the net-
work. Such an assumption may disallow certain absurd
equilibria that are the result of “blackmail by j.”

• Finally, it would be more realistic to look at networks
that are developed in stages, where new nodes arrive
at each stage (old nodes can add links), and all stages
should be equilibria.

While some of these variants and extensions seem analyti-
cally intractable, we believe that research in some of these
more sophisticated models may result in increased under-
standing of the fascinating phenomenon that is the Internet.
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