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Abstract. Eigenvector based methods in general, and Google’s PageR-
ank algorithm for rating web pages in particular, have become an im-
portant component of information retrieval on the Web. In this paper,
we study the efficacy of, and countermeasures for, collusions designed to
improve user rating in such systems.

We define a metric, called the amplification factor, which captures the
amount of PageRank-inflation obtained by a group due to collusions. We
prove that the amplification factor can be at most 1/ε, where ε is the
reset probability of the PageRank random walk. We show that colluding
nodes (e.g., web-pages) can achieve this amplification and increase their
rank significantly in realistic settings; further, several natural schemes to
address this problem are demonstrably inadequate.

We propose a relatively simple modification to PageRank which ren-
ders the algorithm insensitive to such collusion attempts. Our scheme
is based on the observation that nodes which cheat do so by “stalling”
the random walk in a small portion of the web graph and, hence, their
PageRank must be especially sensitive to the reset probability ε. We per-
form exhaustive simulations on the Web graph to demonstrate that our
scheme successfully prevents colluding nodes from improving their rank,
yielding an algorithm that is robust to gaming.

1 Introduction

Reputation systems are becoming an increasingly important component of in-
formation retrieval on the Web. Such systems are now ubiquitous in electronic
commerce, and enable users to judge the reputation and trustworthiness of on-
line merchants or auctioneers. In the near future, they may help counteract
the free-rider phenomenon in peer-to-peer networks by rating users of these net-
works and thereby inducing social pressure to offer their resources for file-sharing
[6, 10, 12]. Also, they may soon provide context for political opinion in the Web
logging (blogging) world, enabling readers to calibrate the reliability of news and
opinion sources.

A simple, and common way to measure a user’s reputation is to use a refer-
ential link structure, a graph where nodes represent entities (users, merchants,
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authors of blogs) and links represent endorsements of one user by another. A
starting point for an algorithm to compute user reputations might then be the
class of eigenvector- or stationary distribution- based reputation schemes exem-
plified by the PageRank algorithm1.

Algorithms based on link structure are susceptible to collusions; we make the
notion of collusion more precise later, but for now we loosely define it as a ma-
nipulation of the link structure by a group of users with the intent of improving
the rating of one or more users in the group. The PageRank algorithm published
in the literature has a simple “resetting” mechanism which alleviates the impact
of collusions. The PageRank value assigned to a page can be modeled as the
fraction of time spent at that page by a random walk over the link structure;
to reduce the impact of collusions (in particular, rank “sinks”), the algorithm
resets the random walk at each step with probability ε.

In this paper, we define a quantity called the amplification factor that char-
acterizes the amount of PageRank-inflation obtained by a group of colluding
users. We show that nodes may increase their PageRank values by at most an
amplification factor 1

ε ; intuitively, a colluding group can “stall” the random walk
for that duration before it resets. While this may not seem like much (a typical
value for ε is 0.15), it turns out that the distribution of PageRank values is such
that even this amplification is sufficient to significantly boost the rank of a node
based on its PageRank value. What’s worse is that all users in a colluding group
could and usually do benefit from the collusion, so there is significant incentive
for users to collude. For example, we found that it was easy to modify the link
structure of the Web by having a low (say 10,000-th) ranked user collude2 with
a user of even lower rank to catapult themselves into the top-400. Similar results
exist for links in other rank levels.

Two natural candidate solutions to this problem present themselves – iden-
tifying groups of colluding nodes, and identifying individual colluders by using
detailed return time statistics from the PageRank random walk. The former
is computationally intractable since the underlying optimization problems are
NP-Hard. The latter does not solve the problem since we can identify scenarios
where the return time statistics for the colluding nodes are nearly indistinguish-
able from those for an “honest” node.

How then, can PageRank based reputation systems protect themselves from
such collusions? Observe that the ratings of colluding nodes are far more sensitive
to ε than those of non-colluding nodes. This is because the PageRank values of
colluding nodes are amplified by “stalling” the random walk; as explained before,
the amount of time a group can stall the random walk is roughly 1/ε. This
suggests a simple modification to the PageRank algorithm (called the adaptive-

1 Although not viewed as such, PageRank may be thought of as a way of rating the
“reputation” of web sites.

2 Collusion implies intent, and our schemes are not able to determine intent, of course.
Some of the collusion structures are simple enough that they can occur quite by
accident.
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resetting scheme) that allows different nodes to have different values of the reset
probability. We have not been able to formally prove the correctness of our
scheme (and that’s not surprising given the hardness result), but we show, using
extensive simulations on a real-world link structure, that our scheme significantly
reduces the benefit that users obtain from collusion in the Web. Furthermore,
while there is substantial intuition behind our detection scheme, we do not have
as good an understanding of the optimum policy for modifying the individual
reset probabilities. We defer an exploration of this to future work.

While we focus on PageRank in our exposition, we believe that our scheme is
also applicable to other eigenvector-based reputation systems (e.g. [10, 12]). We
should point out that the actual page ranking algorithms used by modern search
engines (e.g., Google) have evolved significantly and incorporates other domain
specific techniques to detect collusions that are not (and will not be, for some
time to come) in the public domain. But we believe that it is still important
to study “open-source style” ranking mechanisms where the algorithm for rank
computation is known to all the users of the system. Along with web-search, such
an algorithm would also be useful for emerging public infrastructures (peer-to-
peer systems and the blogosphere) whose reputation systems design are likely to
be based on work in the public domain.

The remainder of this paper is organized as follows. We discuss related work
in Section 2. In Section 3 we study the impact of collusions on the PageRank
algorithm, in the context of the Web. Section 4 shows the hardness of making
PageRank robust to collusions. In Section 5 we describe the adaptive-resetting
scheme, and demonstrate its efficiency through exhaustive simulations on the
Web graph. Section 6 presents our conclusions.

2 Related Work

Reputation systems have been studied heavily in non-collusive settings such as
eBay [5, 14] – such systems are not the subject of study in this paper.

In the literature, there are at least two well-known eigenvector-based link
analysis algorithms: HITS [11] and PageRank [16]. HITS was originally pro-
posed to refine search outputs from Web search engines and discover the most
influential web pages defined by the principal eigenvector of its link matrix. As
discovering the principal eigenvector is the goal, original HITS doesn’t assign a
total ordering on the input pages, and collusion is less of a problem for it than
for PageRank. On the contrary, PageRank was proposed to rank order input
pages and handling clique-like subgraphs is a fundamental design issue.

Despite their difference, both algorithms have been applied into the design of
reputation systems for distributed systems [10, 12]. These designs have mainly
focused on the decentralization part, while their collusion-proofness still relies
on the algorithm itself.

In the context of topic distillation on the Web, many extensions to PageRank
and HITS algorithms [2, 4, 8, 9, 13] have been proposed for improving search-
query results. Two general techniques - content analysis, and bias ranking with
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a seed link set - are used to handle problematic (spam) and irrelevant web links.
While working well in their problem space, these approaches do not give answers
to the algorithmic identification of collusions in a general link structure.

Ng et al. [15] studied the stability of HITS and PageRank algorithm with the
following question in mind: when a small portion of the given graph is removed
(e.g., due to incomplete crawling), how severely do the ranks of the remaining
pages change, especially for those top ranked nodes? They show that HITS is
sensitive to small perturbations, while PageRank is much more stable. They pro-
posed to incorporate the PageRank’s “reset-to-uniform-distribution” into HITS
to enhance its stability.

Finally, for context, we briefly describe the original PageRank algorithm with
its random walk model. Given a directed graph, a random walk W starts its
journey on any node with the same probability. At the current node x, with
probability (1 − ε) W jumps to one of the nodes that have links from x (the
choice of neighbor is uniform), and with probability ε, W decides to restart
(reset) its journey and again choose any node in the graph with the same prob-
ability. Asymptotically, the stationary probability that W is on node x is called
the PageRank value of x, and all nodes are ordered based on the PageRank
values.

In the rest of the paper, we use the term weight to denote the PageRank
(PR) value, and rank to denote the ordering. We use the convention that the
node with the largest PR weight is ranked first.

3 Impact of Collusions on PageRank

In this section, we first show how a group of nodes could modify the referential
link structure used by the PageRank algorithm in order to boost their PageRank
weights by up to 1/ε. We then demonstrate that it is possible to induce simple
collusions in real link structures (such as that in the Web) in a manner that
raises the ranking of colluding nodes3 significantly.

3.1 Amplifying PageRank Weights

In what follows, we will consider the PageRank algorithm as applied to a directed
graph G = (V, E). N = |V | is the number of the nodes in G. A node in G
corresponds, for example, to a Web page in the Web graph, or a blog in the blog
graph; an edge in G corresponds to a reference from one web page to another,
or from one blog to another. Let d(i) be the out-degree of node i, and Wv(i) be
the weight that the PageRank algorithm computes for node i. We define on each
edge eij ∈ E the weight We(eij) = Wv(i)×(1−ε)

d(i) .
Let V ′ ⊂ V be a set of nodes in the graph, and let G′ be the subgraph

induced by V ′. E′ is defined to be the set of all edges eij such that at least one
of i and j is in V ′. We classify the edges in E′ into three groups:

3 We use “pages”, “nodes” and “users” interchangeably in the rest of the paper.
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In Links: An edge eij is an in link for G′ if i /∈ V ′ and j ∈ V ′. E′
in denotes the

set of in links of G′.
Internal Links: An edge eij is an internal link for G′ if i ∈ V ′ and j ∈ V ′.

E′
internal denotes the set of internal links of G′.

Out Links: An edge eij is an out link for G′ if i ∈ V ′ and j /∈ V ′. E′
out denotes

the set of out links of G′.

One can then define two types of weights on G′:

– Win(G′) =
∑

e:e∈E′
in

We(e) + N ′
N , N = |V |, N ′ = |V ′|.

– WG(G′) =
∑

v:v∈V ′ Wv(v).

Intuitively, Win(G′) is, in some sense, the “actual” weight that should be
assigned to G′, when G′ is regarded in its entirety (i.e. as one unit). On the other
hand, WG(G′) is the total “reputation” of the group that would be assigned by
PageRank. Note that nodes within G′ can boost this reputation by manipulating
the link structure of the internal links or the out links.

Then, we can define a metric we call the amplification factor of a graph G

as Amp(G) = WG(G)
Win(G) . Given this definition, we prove (see Appendix A in the

companion technical report [17] for the proof) the following theorem:

Theorem 1. In the original PageRank system, ∀G′ ⊆ G, Amp(G′) < 1
ε .

3.2 PageRank Experiments on the Real-World Graph

It might not be surprising to find out that the weight inflation in PageRank
groups could be as high as 1

ε , since it’s already known from [15] that eigenvector-
based reputation systems are not stable under link structure perturbation. How-
ever, it’s not clear what is the practical import of amplifying PageRank weights.
Specifically, is it easy for a group of colluding nodes to achieve the upper bound
of the amplification factor, 1

ε ? Can nodes improve their ranking significantly?
To answer these questions, we obtained a large Web subgraph from the Stan-

ford WebBase [18]. It contains upwards of 80 million URLs, and is called W in
the rest of the paper. We then modified one or more subgraphs in W to simulate
collusions, and measured the resulting PageRank weights for each node. We tried
a few different modifications, and report the results for one such experiment.

Our first experiment on W is called Collusion200. This models a small number
of web pages simultaneously colluding. Each collusion consists of a pair of nodes
with adjacent ranks. Such a choice is more meaningful than one between a low
ranked node and a high ranked node, since the latter could have little incentive
to collude. Each pair of nodes removes their original out links and adds one new
out link to each other. In the experiment reported here, we induce 100 such
collusions at nodes originally ranked around 1000th, 2000th, . . ., 100000th.

There is a subtlety in picking these nodes. We are given a real-world graph
in which there might already be colluding groups (intentional or otherwise). For
this reason, we carefully choose our nodes such that they are unlikely to be
already colluding (the precise methodology for doing this will become clear in
Section 5.2 when we describe how we can detect colluding groups in graphs).
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Fig. 1. W: New PR rank after Collu-
sion200

Fig. 2. W: New PR weight (normalized
by old PR weight) after Collusion200

Fig. 3. Amplification factors of the 100
colluding groups in Collusion200

Fig. 4. PR distribution in 3 topologies

We calculate the PageRank weights and ranks for all nodes before (called
old rank and weight) and after (called new rank and weight) Collusion200 on
W with ε = 0.15 (a default value assumed in [16]). Figures 1 & 2 show the
rank and weight change for those colluding nodes. In addition, we also plot in
Figure 1 the rank that each colluding node could have achieved if its weight were
amplified by 1

ε while all other nodes remained unchanged in weight, which we
call pseudo collusion.

As we can see, all colluding nodes increased their PR weight by at least 3.5
times, while the majority have a weight amplification over 5.5. More importantly,
collusion boosts their ranks to be more than 10 times higher and close to the
best achievable. For example, a colluding node originally ranked at 10002th had
a new rank at 451th, while the 100005th node boosted its rank to 5033th by
colluding with the 100009th node, which also boosted its rank to 5038th.

Thus, even concurrent, simple (2-node) collusions of nodes with comparable
original ranks can result in significant rank inflation for the colluding nodes. For
another view of this phenomenon in Figure 3 we plot the amplification factors
achieved by the colluding groups in W. It clearly shows that almost all colluding
groups attain the upper bound.
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But what underlies the significant rank inflation in our results? Figure 4
shows the PageRank weight distribution of W (only top 1 million nodes for in-
terest). It also includes, for calibration, the PageRank weight distribution on
power low random graph (PLRG) [1] and the classical random graph [3] topolo-
gies. First, observe that the random graph has a flat curve, which implies that
in such a topology, almost any nodes could take one of the top few positions by
amplifying its weight by 1

ε . Secondly, W and PLRG share the same distribution
characteristic, i.e., the top nodes have large weights, but the distribution flattens
quickly after that. This implies that in these topologies, low ranked nodes can
inflate their ranks by collusion significantly (though perhaps not to the top 10).

While we have discussed only one experiment with a simple collusion scheme,
there are many other schemes through which nodes can successfully achieve large
rank inflation (Section 5.2 presents a few such schemes ). We believe, however,
that our finding is both general (i.e., not constrained to the particular types
of collusions investigated here) and has significant practical import since W
represents a non-trivial portion of the Web. Having established that collusions
can be a real problem, we now examine approaches to making the PageRank
algorithm robust to collusions.

4 On the Hardness of Making PageRank Robust to
Collusions

We will now explore two natural approaches to detecting colluding nodes, and
demonstrate that neither of them can be effective.

The first approach is to use finer statistics of the PageRank random walk.
Let the random variable Xv denote the number of time steps from one visit of
node v to the next. It is easy to see that the PageRank value of v is exactly
1/E[Xv] where E[Xv] denotes the expectation of Xv. For the simplest collusion,
where two nodes A and B delete all their out-links and start pointing only to
each other, the random walk will consist of a long alternating sequence of A’s
and B’s, followed by a long sojourn in the remaining graph, followed again by a
long alternating sequence of A’s and B’s, and so on 4 . Clearly, XA is going to
be 2 most of the time, and very large (with high probability) occasionally. Thus,
the ratio of the variance and the expectation of XA will be disproportionately
large. It is now tempting to suggest using this ratio as an indicator of collusion.

Unfortunately, there exist simple examples (such as large cycles) where this
approach fails to detect colluding nodes. We will present a more involved example
where not just the means and the variances, but the entire distributions of XH

and XC are nearly identical; here H is an “honest” node and C is cheating to
improve its PageRank. The initial graph is a simple star topology. Node 0 points
to each of the nodes 1 . . . N and each of these nodes points back to node 0 in
turn. Now, node N starts to cheat; it starts colluding with a new node N + 1

4 Incidentally, it is easy to show that this collusion mode can achieve the theoretical
upper bound of 1/ε on the amplification factor.
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so that N and N + 1 now only point to each other. The new distributions X0
and XN can be explicitly computed, but the calculation is tedious. Rather than
reproduce the calculation, we provide simulation results for a specific case, where
N = 7 and ε = 0.12. Figure 5 shows the revisit distribution for nodes 0 (the
original hub) and 7 (the cheating node). The distributions are nearly identical.
Hence, any approach that relies solely on the detailed statistics of Xv is unlikely
to succeed.

Fig. 5. Frequency of revisit intervals for the cheating node (node 7) and the honest
node (node 0) for the star-topology. The simulation was done over 1,000,000 steps

Thus, a more complete look at the graph structure is needed, one that fac-
tors in the various paths the random walk can take. One natural approach to
identifying colluders would be to directly find the subgraph with the maximum
amplification (since colluders are those with high amplification). However, it
is very unlikely that this problem is tractable. Consider the intimately related
problem of finding a group S of size k which maximizes the difference of the
weights, WG(S) − Win(S), rather than the ratio. This problem is NP-Hard via
reduction to the densest k-subgraph problem [7]. Details of the reduction are
in the companion technical report [17]. There are no good approximation algo-
rithms known for the densest k-subgraph problem (the best known is O(N1/3)).
The reduction is approximation preserving. Hence, identifying colluding groups
is unlikely to be computationally tractable even in approximate settings.

This suggests that our goals should be more modest – rather than identifying
the entire colluding group, we focus on finding individual nodes that are cheating.
This is the approach we take in the next section.

5 Heuristics for Making PageRank Robust to Collusions

Given our discussion of the hardness of making PageRank robust to collusions,
we now turn our attention to heuristics for achieving this. Our heuristic is based
on an observation explained using the following example. Consider a small (com-
pared to the size of the original graph) group S of colluding nodes. These nodes
can not influence links from V − S into S. Hence, the only way these nodes can
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increase their stationary weight in the PageRank random walk is by stalling the
random walk i.e. by not letting the random walk escape the group. But in the
PageRank algorithm, the random walk resets at each node with probability ε.
Hence, colluding nodes must suffer a significant drop in PageRank as ε increases.

This forms the basis for our heuristic for detecting colluding nodes. We expect
the stationary weight of colluding nodes to be highly correlated 5 with 1/ε and
that of non-colluding nodes to be relatively insensitive to changes in ε . While our
hypothesis can be analytically verified for some interesting special cases (details
in the companion technical report [17]), we restrict ourselves to experimental
evidence in this paper.

5.1 The Adaptive-Resetting Heuristic

The central idea behind our heuristic for a collusion-proof PageRank algorithm
is that the value of the reset probability is adapted, for each node, to the degree
of collusion that the node is perceived to be engaged in. This adaptive-resetting
scheme consists of two phases:

1. Collusion detection
(a) Given the topology, calculate the PR weight vector under different ε

values.
(b) Calculate the correlation coefficient between the curve of each nodes x’s

PR weight and the curve of 1
ε . Label it as co-co(x), which is our proxy

for the collusion of x. co-co(x) = co-co(x) < 0 ? 0 : co-co(x).
2. ε Personalization

(a) Now the node x’s out-link personalized-ε = F (εdefault, co − co(x)).
(b) The PageRank algorithm is repeated with these personalized-ε values.

The function F (εdefault, co − co(x)) provides a knob for a system designer to
appropriately punish colluding nodes. In our experiments we tested two func-
tions:

Exp. function FExp = ε
(1.0−co-co(x))
default .

Linear function FLinear = εdefault + (0.5 − εdefault) × co-co(x).

The choice of function is subjective and application-dependent, and given
space limitations, we mostly present results based on FExp.

5.2 Experiments

As in Section 3, we conducted experiments on the W graph. In all experiments
with our adaptive-resetting scheme, we chose seven ε values in the collusion

5 The correlation coefficient of a set of observations (xi, yi) : i = 1, .., n is given by

co-co(x, y) =

∑
i=1,···,n(xi − x)(yi − y)

√∑
i=1,···,n(xi − x)2

∑
i=1,···,n(yi − y)2

.
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detection phase – 0.6, 0.45, 0.3, 0.15, 0.075, 0.05, and 0.0375 – and used 0.15 as
εdefault. While there are eight PageRank calculations, the actual computational
time for the adaptive-resetting scheme was only 2-3 times that of the original
PageRank algorithm. This is because the computed PR weight vector for one ε
value is a good initial state for the next ε value.

Basic Experiment: We first repeated the experiment Collusion200 for adaptive-
resetting scheme. As mentioned in Section 3.2, all the colluding nodes are chosen
from the nodes unlikely to be already colluding, and this is judged by their co-co
values in the original topology. Precisely, we select nodes with co − co(x) ≤ 0.1.
Choosing nodes with arbitrary co-co values doesn’t invalidate the conclusions
in this paper (as discusses in the companion technical report [17]), but our
selection methodology simplifies the exposition of our scheme.

We compared the original PageRank algorithm, the adaptive-resetting schemes
using FExp and FLinear. As shown in Figure 6, the adaptive-resetting scheme
FExp restricted the amplification factors of the colluding groups to be very close
to one, and FLinear also did quite well compared to the original PageRank.

In Figure 7 we compare the original PageRank and the adaptive-resetting
scheme using FExp based on the old and new rank before and after Collusion200
in W. For the original PageRank algorithm the rank distribution clearly indi-
cates how nodes benefit significantly from collusion. The curves for the adaptive-
resetting scheme nearly overlap, illustrating the robustness of our heuristic. Fur-
thermore, note that the curves of the PageRank algorithm before collusions and
the adaptive-resetting before collusions are close to each other, which means
the weight of non-colluding nodes is not affected noticeably when applying the
adaptive-resetting scheme instead of the original PageRank scheme.

Other Collusion Topologies an Experiment with Miscellaneous Col-
lusion Topologies: We tested adaptive-resetting scheme under other collusion
topologies in an experiment called Collusion22. In Collusion22 22 low co-co
(≤ 0.1) nodes are selected for 3 colluding groups:



102 H. Zhang et al.

Fig. 8. W: Amplification factors of the
3 colluding groups in Collusion22

Fig. 9. W: PR rank comparison be-
tween original PageRank and Adaptive-
ε scheme in Collusion22

G1. G1 has 10 nodes, which remove their old out links and organize into a
single-link ring. All nodes have their original ranks at around 1000th.

G2. G2 has 10 nodes, which remove their old out links and organize into a star
topology by one hub pointing to the other 9 nodes and vice versa. The
hub node has its original rank at around 5000th, while the other nodes are
ranked at around 10000th originally.

G3. G3 has 2 nodes, which remove the old out links and organize into a
circle. One is originally ranked at around 50th, and the other at around
9000th.

We ran Collusion22 on W using both original PageRank and adaptive-
resetting scheme. We first observed that the adaptive-resetting scheme success-
fully detected all 22 colluding nodes by reporting high co-co values (> 0.96).

In Figure 8, we compare the original PageRank algorithm, the adaptive-
resetting schemes with function FExp and FLinear based on the metric ampli-
fication factor under Collusion22. As in Figure 6 the two adaptive-resetting
schemes successfully restricted the weight amplification for the colluding nodes.

In Figure 9 we compare original PageRank and adaptive-resetting scheme
with function FExp based on the old and new rank before and after Collusion22
in W. The results for the graph B were similar and are omitted. As we can see, the
nodes of G1 and G2 seem to have some rank improvement in adaptive-resetting
before collusions compared to their ranks in the PageRank algorithm before col-
lusion, while their weights have increased only marginally. This is due to the
rank drop of many high rank nodes with high co-co values in adaptive-resetting
before collusions. Lastly, it is interesting to observe that with the original PageR-
ank algorithm, even the two nodes with significantly different ranks in G3 can
benefit mutually from a simple collusion: the 8697th node rocketed to the 12th,
and the 54th node also jumped to the 10th position.

More Experiment Results: We have done more experiments to validate the
correctness of adaptive-resetting scheme. Due to the space limit, we do not



Making Eigenvector-Based Reputation Systems Robust to Collusion 103

present them here and refer the interested readers to the companion technical
report [17] for details.

6 Conclusion

In this paper we studied the robustness of one eigenvector-based rating algo-
rithm: PageRank. We point out the importance of collusion detection in PageR-
ank based reputation systems for real-world graphs, its hardness, and then a
heuristic solution. Our solution involves detecting colluding nodes based on the
sensitivity of their PageRank value to the resetting probability ε and then penal-
izing them by assigning them a higher reset probability. We have done extensive
simulations on the Web graph to demonstrate the efficacy of our heuristic.
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