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Abstract

We consider the problem of clustering a collection of elements based on pairwise
judgments of similarity and dissimilarity.

Bansal, Blum and Chawla (in: Proceedings of 43rd FOCS, 2002, pp. 238–47) cast
the problem thus: given a graph G whose edges are labeled “+” (similar) or “−”
(dissimilar), partition the vertices into clusters so that the number of pairs correctly
(resp. incorrectly) classified with respect to the input labeling is maximized (resp.
minimized). It is worthwhile studying both complete graphs, in which every edge is
labeled, and general graphs, in which some input edges might not have labels. We
answer several questions left open by Bansal et al. and provide a sound overview of
clustering with qualitative information.

Specifically, we demonstrate a factor 4 approximation for minimization on com-
plete graphs, and a factor O(log n) approximation for general graphs. For the max-
imization version, a PTAS for complete graphs was shown by Bansal et al.; we give
a factor 0.7664 approximation for general graphs, noting that a PTAS is unlikely
by proving APX-hardness. We also prove the APX-hardness of minimization on
complete graphs.
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1 Introduction

The problem of grouping a corpus of data into clusters that contain similar
items arises in numerous contexts and disciplines. Deservedly, it has been stud-
ied extensively in the algorithms and combinatorial optimization literature.
Much of this literature works with the following abstraction of the problem:
the input is represented as a table of distances between pairs of items where
the distance between x and y represents how different x and y are. The goal is
to find a clustering of the data that optimizes some function of the distances
between items within or across clusters under some global constraint, such as
knowledge of the total number of clusters. Quintessential examples include the
k-center, k-median, and k-sum clustering problems.

This clustering paper departs from the above distance paradigm. All we have
at our disposal is qualitative information from a judge: a labeling of each
pair of elements as either similar or dissimilar. We are not provided with
any quantitative distance information about the pairs. Our aim is to produce
a partitioning into clusters that puts similar objects in the same cluster and
dissimilar objects in different clusters, to the maximum extent possible. If there
exists a clustering that is correct for every edge, then the problem is trivially
solved by identifying as clusters the connected components in the graph of
similar pairs (see below). When the judge has made mistakes, interesting and
non-trivial questions arise: primarily, finding a clustering that differs from the
judge’s verdicts on the fewest possible pairs. Bansal et al. pointed out that
correlation clustering corresponds to agnostic learning [1], when viewed as a
machine learning problem. The edge labels are the examples and we are only
allowed to use partitionings as hypotheses for the target function.

An obvious graph-theoretic formulation of the problem is the following: given
a graph G = (V, E) with each edge labeled either “+” (similar) or “−” (dis-
similar), find a partitioning of the vertices into clusters that agrees as much as
possible with the edge labels. The maximization version, denoted by MaxA-
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gree in this paper, seeks to maximize the number of agreements: the number
of + edges inside clusters plus the number of − edges across clusters. The
minimization version, denoted by MinDisAgree, aims to minimize the num-
ber of disagreements: the number of − edges within clusters plus the number
of + edges between clusters. An intriguing feature of this clustering problem
is that, unlike most clustering formulations, we do not need to specify the
number of clusters k as a parameter. We have only a single objective; whether
the optimal solution uses few or many clusters is automatically dictated by
the edge labels.

If every pair of elements is labeled either + or −, then G will be a complete
graph. So that we can capture situations where the judge might be unable
to tell if certain pairs of elements are similar or dissimilar, we do not insist
on the input being a complete graph. One upshot of the clustering will be
to deduce the missing labels from the existing ones. Also, in some instances
the judge might provide confidence information for each of the labels. This
is captured by assigning weights to the edges; one can then consider natural
weighted versions of MaxAgree and MinDisAgree.

1.1 Previous and Related Work

The above problem on complete graphs seems to have been first considered
by Ben-Dor et al. [2] motivated by some computational biology questions.
Later, Shamir et al. [3] studied the computational complexity of the problem
and showed that MaxAgree (and hence also MinDisAgree) is NP-hard
for complete graphs. Shamir et al. used the term Cluster editing to refer to
this problem; recent algorithms for fixed parameter versions are presented by
Gramm et al. [4]. Independently, Chen et al. [5] examined a very similar prob-
lem in the context of phylogeny trees, essentially showing that MinDisAgree

is NP-hard.

As mentioned earlier, Bansal, Blum, and Chawla [6] considered this problem
independently. They initiated the study of approximate solutions to MinDis-

Agree and MaxAgree, focusing mainly on the case when G is complete.
Bansal et al. gave a polynomial time approximation scheme (PTAS) for Max-

Agree on complete graphs. For the minimization version MinDisAgree,
they gave an approximation algorithm with constant performance ratio. The
constant is a rather large one, so it should be viewed as a qualitative result,
demonstrating that a constant factor approximation can be achieved. In the
full version of their work [7], Bansal et al. provide a simple algorithm that
is at most a factor three worse than the best partitioning into two clusters.
They posed several open questions including those of demonstrating hardness
of approximation results for complete graphs and understanding the problem
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on general graphs. These questions motivated a number of groups, such as
ours, to work on this problem simultaneously.

Both Demaine and Immorlica [8], and Emanuel and Fiat [9], independently
from each other and from this paper, announced results on clustering with
qualitative information. These two papers focus on MinDisAgree in general
graphs. Demaine and Immorlica [8] present a factor O(log n) algorithm for
general graphs, based on region growing, and demonstrate an approximation-
preserving reduction from (weighted) minimum multicut. They also provide an
O(r3) approximation algorithm for MinDisAgree in Kr,r-minor-free graphs.
In [9], both reductions to and from minimum multicut are presented; in par-
ticular the authors show a reduction from unweighted multicut to unweighted
MinDisAgree. For MaxAgree on general graphs, Swamy [10], again inde-
pendently from this paper, presented a factor 0.7666 approximation algorithm
(very slightly better than the factor we present here).

1.2 Our Results

In this paper, we answer several questions left open by the work of Bansal et
al. [6]. As a consequence, our results provide a better overview of the approx-
imability of the various variants of clustering with qualitative information.

Complete graphs. Our main algorithmic result here is a factor 4 approxi-
mation algorithm for MinDisAgree on complete graphs. This significantly
improves on the performance ratio of the combinatorial algorithm in [6]. Our
algorithm is based on a natural linear programming relaxation; it rounds the
fractional solution (a semi-metric on the vertices) using the region growing ap-
proach. The completeness of the graph allows us to to achieve a constant ap-
proximation using region growing, instead of the usual logarithmic factor [11].
The integrality gap of our LP formulation is 2 and we also show that beating
factor 3 would require significant departure from our strategy. To complement
our algorithmic result, we also prove that MinDisAgree on complete graphs
is APX-hard (that is, is NP-hard to approximate within some constant fac-
tor greater than 1) via a somewhat intricate reduction. The reduction used
in [6] to prove NP-hardness does not yield APX-hardness. In contrast, the
MaxAgree does admit a PTAS on complete graphs [6].

General graphs. Bansal et al. did not give any algorithms for general graphs,
but noted that MinDisAgree is APX-hard. They provided evidence that
MaxAgree is unlikely to admit a PTAS (unlike the complete graph case)
by showing that a PTAS would imply a much better algorithm for color-
ing 3-colorable graphs than is currently known. We give a factor O(log n)
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approximation algorithm for MinDisAgree—this follows from a straightfor-
ward modification of the Garg, Vazirani, Yannakakis (GVY) region-growing
algorithm for minimum multicut [11]. We also note that MinDisAgree is at
least as hard to approximate as multicut, so a constant factor approximation
algorithm would be a major breakthrough.

We prove that MaxAgree is APX-hard and thereby provide a concrete hard-
ness result—in contrast to the above evidence of hardness based on a rela-
tion to graph coloring. A complementary hardness result follows for MinDis-

Agree. On the algorithmic side, the naive 1/2-approximation algorithm,
namely choosing the better of placing all elements in a single cluster and
placing each of them in a separate cluster, was the best known for Max-

Agree. We give a factor 0.766 approximation algorithm based on rounding
a semidefinite programming relaxation. Moreover, if there exists a clustering
that correctly classifies most of the edges, then our algorithm will also find one
with a similar property (we defer the quantitative statement to the relevant
technical section). Our interest in the latter result is due in part to the fact
that it brings out some of the difficulty that must be overcome if one tries
to prove a super-constant factor inapproximability result for MinDisAgree.
Such a result would have to focus on instances where an almost perfect clus-
tering exists for both the yes and no cases of the gap reduction.

1.3 Organization

We present algorithms for general graphs (for both the minimization and max-
imization variants) in Section 2. We then turn to complete graphs and describe
our factor 4 approximation algorithm for MinDisAgree in Section 3. Finally,
we present the inapproximability results that complement our algorithms in
Section 4.

2 Algorithms for general graphs

In this section, we consider the problems MinDisAgree and MaxAgree on
general weighted graphs.

2.1 MinDisAgree

We describe a natural LP relaxation for MinDisAgree. This is very similar
to the LP used in the GVY minimum multicut algorithm [11].
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minimize
∑

+(ij)

wij · xij +
∑

−(ij)

wij · (1− xij)

subject to xik ≤ xij + xjk for all i, j, k

xij ∈ {0, 1} for all i, j

(1)

A partitioning into clusters can be represented with a set of binary variables,
one for each pair of vertices. If i and j are in the same cluster then xij is 0, if
they are in different clusters then xij is 1. Since each cluster is an equivalence
class, we know that if xij = 0 and xjk = 0, then xik = 0. We can express this
fact using the triangle inequality,

xik ≤ xij + xjk .

The objective is to minimize the number of mistakes: the number of positive
edges for which xij is one and the number of negative edges for which xij is
zero. The integer program (1) summarizes the situation: +(ij) indicates that
the edge between i and j has a positive label, while −(ij) indicates a negative
label. We note in passing that solid lines indicate positive edges, whereas
dashed lines indicate negative edges in the diagrams. The confidence that the
judge places on the (dis)similarity label between +i and j is represented by the
weight wij. The LP relaxation is obtained by replacing the integer constraints
in (1) with 0 ≤ xij ≤ 1 for all i, j.

Let the value of the optimal LP solution be denoted by OPTLP. A fairly
straightforward application of the GVY region growing procedure yields a
solution of cost at most O(log n)OPTLP. We briefly describe this algorithm,
AlgGeneral, and outline its analysis.

We will refer to xij as the distance between i and j, which is consistent with
the fact that xij is a semi-metric in the range [0, 1]. Intuitively, points that are
close should be placed in the same cluster and points that are far should be
placed in different clusters. Let Bx(i, r) denote the set of points whose distance
from i is less than or equal to r. For a set of vertices S, let δ(S) be the set of
edges between S and S.

Theorem 1 AlgGeneral achieves an O(log n) approximation for MinDis-

Agree on general graphs.

PROOF. The GVY region growing procedure suggests the choice of radius
r in step 2(a) of the algorithm. Set V +

x (i, r) to be

OPTLP

n
+

∑

+(uv)∈Bx(i,r)

wuvxuv +
∑

+(uv)∈δ(Bx(i,r))

wuv(r − xiu) .
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AlgGeneral

1. C ← ∅. /* Collection of clusters */
2. While there exist i, j in the graph such that xij > 2/3:

(a) Let S = Bx(i, r) for some r < 1/3. /* See proof for value of r */
(b) C ← C ∪ {S}.
(c) Remove S and δ(S) from the current graph.

3. Return C.

This is the contribution to the LP solution from positive edges that have
at least one endpoint in Bx(i, r), plus an additional amount OPTLP/n. Let
W+

x (i, r) denote the sum of weights of positive edges in δ(Bx(i, r)). We choose
r < 1/3 so that the ratio of W+

x (i, r) to V +
x (i, r) is minimized. The analysis

technique in [11] can be used to show that there exists a radius r < 1/3 such
that W+

x (i, r) ≤ (3 log n)V +
x (i, r). This and the triangle inequality imply that

the total weight of positive edges with end points in different clusters is in
O(log n)OPTLP.

Now we account for the negative edges. Any negative edge ij that ends up
inside a cluster in our solution contributes wij · (1−xij) to the LP, which is at
least wij/3, since xij ≤ 2/3. On the other hand, we pay wij for this edge. This
implies that the total weight of negative edges with end points in the same
cluster is at most O(log n)OPTLP. 2

The O(log n) approximation ratio we obtain from our LP is asymptotically
the best possible. Our LP formulation has integrality gap Ω(log n), as shown
by examples similar to the expander gap examples for minimum multicut [11].

We expect that a procedure such as this one, which learns distances from
similarity judgment information, will have further applications in situations
where no natural distance function exists.

2.2 MaxAgree

Since Bansal, Blum, and Chawla [6] presented a PTAS for complete graphs,
we need only look at general graphs for MaxAgree. Obtaining a 1/2 ap-
proximation for MaxAgree is trivial, as observed by Bansal et al. [6] for the
complete graph. If the total weight of positive edges is greater than the total
weight of negative edges, place all vertices in one cluster; otherwise, put each
of them in an individual cluster.
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A linear program with poor integrality gap

Consider an LP relaxation for MaxAgree similar to the LP used for MinDis-

Agree. The constraints are exactly the same, but the objective is

maximize
∑

+(ij)

wij · (1− xij) +
∑

−(ij)

wij · xij

Theorem 2 The integrality gap of the LP relaxation for MaxAgree is no
better than 2/3 + ε for any ε > 0.

PROOF. Our gap instance consists of two sets A and B of n vertices each.
The graph is in fact complete, with every edge having a positive or negative
label. The edges between A and B are positive; those with end points within
the same set are negative. Thus there are n2 positive edges and n(n − 1)
negative edges. The optimal LP solution assigns xij = 1/2 for +(ij) and
xij = 1 for −(ij), and so OPTLP is n(n − 1) + n2/2. On the other hand,
the value of OPT for this instance is n2: any instance with equal numbers
of elements from A and B in each cluster suffices—we leave the proof to the
reader. Hence the integrality gap is 2n/(3n − 2), which approaches 2/3 as n
increases. 2

Rounding a semidefinite program

We next consider a semidefinite program (SDP) for MaxAgree, as SDPs
can be solved to arbitrary precision in polynomial time. To motivate the SDP,
we associate a distinct basis vector with each cluster in a solution; for every
vertex i in that cluster we set the unit vector vi to be that basis vector. The
agreement of the clustering solution can now be expressed in terms of the dot
products vi · vj . If vertices i and j are in the same cluster, then vi · vj = 1,
if not, vi · vj = 0. With this vector solution in mind, we consider the SDP
relaxation for MaxAgree (2).

maximize
∑

+(ij)

wij(vi · vj) +
∑

−(ij)

wij(1− vi · vj)

subject to vi · vi = 1 for all i

vi · vj ≥ 0 for all i, j

(2)

Consider the following general approach for rounding this SDP: Pick t random
hyperplanes, dividing the set of vertices into 2t clusters. We refer to this scheme
as Ht. Our rounding scheme takes the better of the two solutions returned by
H2 and H3, denoted by Best(H2, H3).
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Theorem 3 Best(H2, H3) returns a solution in which the expected number of
agreements is at least 0.7664 OPTSDP.

PROOF. In order to analyze Best(H2, H3), we consider a slightly different
scheme: pick H2 with probability 1−α and pick H3 with probability α, denoted
by Comb(H2, H3). Clearly the approximation ratio of Comb(H2, H3) is a lower
bound on the approximation ratio of Best(H2, H3).

We perform an edge-by-edge analysis: For each edge ij, we measure the ex-
pected contribution to the solution produced relative to its SDP contribution.
The (nonnegative) edge weights are common to both the integral formulation
and its SDP relaxation and so can be ignored. Consider an edge ij such that
the angle between vi and vj is θ ∈ [0, π/2]. The probability that vi and vj are
not separated by Ht is (1− θ/π)t.

If ij is a positive edge, the contribution to the SDP solution is vi · vj = cos θ.
On the other hand, the expected contribution to the number of agreements in
Comb(H2, H3) is

(1− α)(1− θ/π)2 + α(1− θ/π)3.

If ij is a negative edge, the contribution to the SDP solution is 1 − vi · vj =
1 − cos θ. On the other hand, the expected contribution to the number of
agreements in Comb(H2, H3) is

1− (1− α)(1− θ/π)2 − α(1− θ/π)3.

Thus the approximation ratio can be bounded by

min
θ∈[0,π/2]

{

(1− α)(1− θ
π
)2 + α(1− θ

π
)3

cos θ
,
1− (1− α)(1− θ

π
)2 − α(1− θ

π
)3

1− cos θ

}

.

For α ≤ 0.1316, the minimum of the two expressions is 3/4 + α/8. In fact the
minimum value of the second expression is 3/4 + α/8 for all α ∈ [0, 1] and is
achieved when θ = π/2. The upper bound on α is obtained by minimizing the
first expression. Setting α = 0.1316 yields a 0.7664 approximation. 2

The following simple example shows that the best approximation factor we
can hope to achieve using the SDP (2) is at most 0.828. Our example has
three vertices, 1, 2, 3, in which edges (1, 2) and (2, 3) are positive, but (1, 3) is
negative. The optimal SDP solution consists of the vectors v1 = (1, 0), v2 =
(1/
√

2, 1/
√

2), v3 = (0, 1), with objective value 1 + 2/
√

2 = 1 +
√

2. On the
other hand, OPT = 2, so the integrality gap is at most 2/(1 +

√
2) ≈ 0.828.

Our SDP formulation does not, however, respect the triangle inequalities on
the values xij = 1 − vi · vj. Even with such constraints added, the example
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below shows that significant improvements to the approximation ratio may
not be possible. Consider an instance on five vertices 0, 1, 2, 3, 4. Edges from
0 are positive, but all others are negative. With v0 = (0.5, 0.5, 0.5, 0.5), and vi

equal to the ith basis vector ei, OPTSDP = 8. However, OPT = 7, with clusters
{0, 1}, {2}, {3}, {4}, showing that we can rule out an SDP-based algorithm
with approximation factor greater than least 7/8 that observes the triangle
inequalities.

An alternative approach is to use the rounding scheme used by Frieze and
Jerrum [12] for max-k-cut. The basic idea is to pick k random unit vectors
(spokes) and assign each vector to the closest spoke. The analysis of such
a scheme is quite involved and the gap example above suggests that pursu-
ing this direction is unlikely to yield significant improvements. Nevertheless,
Swamy [10] recently carried out an analysis of such a rounding procedure and
reported a factor 0.7666 approximation algorithm for MaxAgree.

2.3 Almost satisfiable instances

Consider an instance for which the optimal SDP solution is (1− ε)W , where
W is the total weight of all the edges. We show that in this case it is possible
to obtain a clustering with expected agreement in (1− O(

√
ε log(1/ε)))W .

This strong result suggests there would be difficulty in proving super-constant
inapproximability for MinDisAgree.

It is convenient at this point to define various parameters. Let P denote the
total weight of the positive edges and N the total weight of the negative edges.
We define ρ and ν as follows:

ρ =

∑

+(ij) wij(1− vi · vj)

P

ν =

∑

−(ij) wij(vi · vj)

N
.

Since OPTSDP = (1− ε)W , we observe that ε ·W = ρ · P + ν ·N .

Lemma 1 P
√

ρ ≤ W
√

ε.

PROOF. It is trivially true if ρ ≤ ε. Otherwise, by definition Pρ ≤ Wε, so
P
√

ρ ≤ Wε/
√

ρ < W
√

ε. 2

We prove that the rounding scheme Ht with t = log(1/ε) satisfies the following
two lemmas and then conclude with the main result of this section.
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Lemma 2 The expected contribution from the positive edges is at least P −
O(
√

ε log(1/ε))W .

PROOF. Define εij to be 1− vi · vj, so the expected weight of positive edges
that are not cut in the solution is

∑

+(ij)

wij

[

1− cos−1(1− εij)/π)
]t

.

The function (1− cos−1(x)/π)t is convex, so by applying Jensen’s inequality,
we obtain the lower bound

P
[

1− cos−1(1− ρ)/π
]t

.

Since cos−1(1 − ρ) is in O(
√

ρ), the contribution of the positive edges is at
least

P (1− O(
√

ρ))t ≥ P (1− tO(
√

ρ)) ≥ P −O(
√

ε log(1/ε))W ,

by Lemma 1. 2

Lemma 3 The expected contribution from the negative edges is at least N(1−
ε− ν).

PROOF. Now redefine εij to be vi ·vj . The expected weight of negative edges
that are cut in the solution is

∑

−(ij)

wij

(

1−
[

1− cos−1(εij)/π
]t

)

.

Again, convexity tells us that

[

1− cos−1(εij)/π)
]t

is no greater than

εij

(

1− cos−1(1)/π
)t

+ (1− εij)
(

1− cos−1(0)/π
)t

.

This is bounded above by εij + 1/2t. Since Nν =
∑

−(ij) wijεij, the expected
contribution of the negative edges is at least N(1−ν−ε), for t = log(1/ε). 2

Theorem 4 The expected number of agreements as a result of rounding with
Hlog(1/ε) is in W (1−O(

√
ε log(1/ε))).
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minimize
∑

+(ij)

xij +
∑

−(ij)

(1− xij)

subject to xik ≤ xij + xjk for all i, j, k

0 ≤ xij ≤ 1 for all i, j

(3)

PROOF. Lemmas 2 and 3 show that the expected number of agreements
resulting from the Hlog(1/ε) rounding scheme is at least

(P + N)− O(
√

ε log(1/ε))W − (ε + ν)N .

We note that (ε + ν)N ≤ 2εW and that ε is in O(
√

ε log(1/ε)) as ε → 0.
Therefore the expected number of agreements is at least W (1−O(

√
ε log(1/ε)).

3 MinDisAgree in the complete graph

We now study the clustering problem on complete graphs. As already men-
tioned, Bansal, Blum, and Chawla [6] present a PTAS for MaxAgree on
complete graphs, hence we focus on MinDisAgree. We present a factor four
algorithm for minimizing disagreements in the complete graph. In contrast to
Bansal et al. [6], who devised a combinatorial algorithm with factor 17433,
our algorithm uses a linear programming formulation of the problem.

3.1 The four approximation

Our approach bears some similarity to the algorithm for MinDisAgree in
general graphs, AlgGeneral, that we presented in Section 2.1. Once the
linear relaxation (3) of the program for the is solved, in polynomial time, we
are ready for our factor four approximation algorithm.

We refer to xij not only as the distance between i and j, but also as the
length of edge ij. The procedure we present, AlgComplete, illustrated also
in Fig. 1, clearly describes a partitioning. We analyze its performance by
comparing the number of mistakes incurred to the LP costs of appropriate
edges.

Let us reflect on the natural intuition behind the algorithm. Intuitively, the LP
solution xui gives a handle on how different u and i are: the smaller the value of
xui the more incentive there is to place u and i in the same cluster. Therefore,
it makes sense to cluster the points close to u (in a ball Bx(u, r)) in one cluster,
say C, together with u. If both i and j are close to u, but are connected by
a negative edge, we will cluster them together and make a mistake, but the
LP cost of that edge 1− xij will also be high since xij ≤ xiu + xju must also
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AlgComplete

1. Let S = V and repeat the following steps until S is empty.
2. Select a vertex u arbitrarily from S.
3. Let T be the set of vertices whose distance from u is no greater than 1/2,

except u itself: Bx(u, 1/2)− {u}.
4. If the average distance of the vertices in T from u is not less than 1/4,

then make C = {u} a singleton cluster and jump to step 6.
5. If the average distance is less than 1/4, then make C = {u} ∪ T a cluster.
6. Let S = S − C and jump to step 2 (the start of the loop).

ST

u T ST

10.50

u T

Fig. 1. Illustration of the two main choices in AlgComplete: numerical annotations
are the distances from u

be small. This basic strategy works well with negative edges. However, there
is a problem if most of the vertices in C are near its periphery, that is, at
distance close to r from u. In such a case, the LP might have very low cost xij

for some +(ij) crossing the cut, compared to the unit cost that the algorithm
incurs on the same edge. A natural measure of whether this phenomenon could
occur is the average distance from u of points in C. If this is large, then there
could be many points on the periphery, and the above difficulty could occur,
so we simply place u in its own cluster. It turns out, from the analysis that
follows, that the best threshold for the average distance, criterion for choosing
between the ball cluster and a singleton cluster, is whether the average distance
is greater or less than 1/4.

At each iteration of the loop, we relabel the vertices (other than u) so that
i < j if xui < xuj , breaking ties arbitrarily. The triangle inequality tells us
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that for i < j,

xuj ≤ xui + xij and xij ≤ xui + xuj .

Observation 1 The LP cost of a positive edge ij, xij, is at least xuj − xui.
The LP cost of a negative edge ij, 1− xij, is at least max{0, 1− xui − xuj}.

Associated with the new cluster, C, are the edges within C and the edges
between C and S − C. We show that the mistakes in each iteration of Al-

gComplete can be charged to the LP costs of the edges associated with the
new cluster C. Let us now consider one iteration at a time, starting with the
case when a singleton cluster is formed.

Singleton cluster

The edges associated with a singleton cluster are simply all the edges incident
to u: the positive ones are the mistakes. We know from our choice in step 4
that

∑

i∈T

xui ≥ |T |/4 .

For i ∈ T , 1 − xui ≥ xui, so the LP cost of all edges from u to T , is at least
|T |/4. The number of (positive) edge mistakes from u to T , which is at most
|T |, is thus at most four times the LP cost of edges from u to T .

The remaining edges associated with this cluster are between u and S − T .
Each positive mistake incident on u has distance, and thus LP cost, greater
than 1/2; so the number of mistakes is at most twice the LP cost of these
edges.

Cluster with T

We now turn to the case in which C = {u}∪T . There are two kinds of mistakes
in this case: negative edges inside C and positive edges between C and S−C.

(i) Negative edge mistakes

If both i and j are within distance 3/8 of u, then the LP cost of negative
edge ij is at least 1/4, by Observation 1. This accounts for the mistake within
factor 4.

Each remaining negative edge mistake ij will be charged to vertex j, the vertex
that is further from u (see Fig. 2).

So fix j and assume xuj lies in the range (3/8, 1/2]. Observation 1 tells us that
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Fig. 2. Charging mistakes and LP costs to the further (fixed) vertex j

the total LP cost of all the edges within C, associated with j, is at least

∑

i:i<j,+(ij)

(xuj − xui) +
∑

i:i<j,−(ij)

(1− xui − xuj) .

We let xvv = 0 for all v so that this summation is well-defined. Denote by
pj the number of positive edges ij for which i < j, and let nj stand for the
number of such negative edges. The total cost is then

pjxuj + nj(1− xuj)−
∑

i:i<j

xui . (4)

Since we are including T in C, we know that the average value of xui is less
than 1/4 for i ∈ T . The summation above is over the set {i : i < j}, but since
xui ≥ 3/8 for i > j, the average value of the summation terms in (4) is less
than 1/4. Hence the LP cost is greater than

pjxuj + nj(1− xuj)−
pj + nj

4
. (5)

The number of mistakes associated with j is merely nj . The LP cost is bounded
below by a linear function (5) that ranges from pj/8+3nj/8, when xuj = 3/8,
to pj/4 + nj/4, when xuj = 1/2. Therefore the LP cost is at least nj/4 and
all the (negative) mistakes are accounted for within factor four. Since this
property holds for every j in the range (3/8, 1/2], we conclude that the total
number of negative edge mistakes is accounted for by appropriate LP edge
costs within factor four.

(ii) Positive edge mistakes

Consider positive edges ij that cross the distance 1/2 boundary: xui ≤ 1/2,
but xuj > 1/2. In particular, if xuj ≥ 3/4, then xuj − xui ≥ 1/4 and so each
such positive edge pays for itself within factor four.

Again, we associate each remaining edge with the vertex that is further from
u. So fix j and assume that xuj is in the range (1/2, 3/4). The LP cost of the
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edges associated with j is

pjxuj + nj(1− xuj)−
∑

i∈T∪{u}

xui ,

which is strictly greater than (5). This time, the linear function lower bound
ranges between pj/4 + nj/4, when xuj = 1/2, and pj/2, when xuj = 3/4. The
number of (positive) mistakes is pj so again we can pay for these within factor
4 of the LP cost. This argument holds for all j and thus for all positive edge
mistakes.

Summary

Each choice of cluster leads to a ratio of at most four between the number
of mistakes and the linear programming cost of associated edges. Since in
past iterations we never charged to edges within S, and in future iterations
we charge only to edges within S − C, we have a factor four approximation
algorithm.

Theorem 5 AlgComplete achieves a factor 4 approximation for MinDis-

Agree on complete graphs.

As we remarked earlier, if we assume that all positive edges are correct, the
problem is trivial as it reduces to finding connected components. Shamir,
Sharan, and Tsur [3] studied the cluster deletion problem, in which all neg-
ative edges are deemed to be correct and must be cut, and showed it to be
APX-hard. In this case, the problem analogous to MinDisAgree is to find a
clustering with the fewest possible positive edges crossing cluster boundaries.
Our algorithm for MinDisAgree also achieves a 4 approximation in this vari-
ant. The idea is to add the constraints xij = 1 in the linear program for each
−(ij), and then run AlgComplete on the LP solution. We make the minor
amendment, which does not affect the proof of Theorem 5 substantially, that
T does not include the vertices whose distance from u is exactly 1/2. Thus
each cluster C has diameter less than 1 and the endpoints of a negative edge
are never placed in the same cluster. The analysis for the number of mistakes
on positive edges remains identical. With this variant, as with MinDisAgree,
it is an interesting question whether the factor 4 can be improved.

3.2 Approximation limitations

Integrality gap

Any approximation technique that is based on the linear program (3) is limited
by its integrality gap. The following star example, in Fig. 3, shows this gap is
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Fig. 3. MinDisAgree instance with integrality gap almost 2, showing both the
fractional optimum (with distances) and integral optimum (with clusters). Some
edges have been omitted for clarity.

at least two. Place n vertices around a single center vertex so that the center
is joined to the others with positive edges, but the perimeter vertices have
negative edges between them. In an optimum fractional solution the positive
edges have length 1/2 and the negative edges have length 1, so OPTLP = n/2.
An optimal clustering places all the perimeter vertices in singleton clusters,
except for one, which is in a cluster with the center, so OPT = n − 1. The
gap, 2(n− 1)/n, has limit 2 as n increases.

Limitations of region growing

The approximation technique we used, based on GVY region growing, cannot
achieve a factor better than three. Our algorithm cuts a cluster C out of the
set S, where C is chosen according to the distance relation x. We allowed
ourselves two options for C: the singleton set {u} or Bx(u, 1/2). If we restrict
ourselves to clusters of the form Bx(u, r), or {u}, then we are confounded by
the following star type example. Admittedly, this example is not an optimal
fractional solution to the linear program, but it is a feasible solution and thus
Observation 1, on which our technique is based, applies.

The positive and negative labels are identical to the previous star, but now
every edge has fractional length 1/3. If our cluster radius is less than 1/3 then
we have a singleton cluster {u}, in which case the gap ratio is 3. Alternatively,
if the radius is at least 1/3 then all the vertices are in one cluster and the
number of mistakes is n(n − 1)/2. Since the LP cost is n(n − 1)/6 + n/3,
the gap is 3(n − 1)/(n + 1), which tends to 3 as n increases. Therefore, no

17



3D d d 1−D d

n

n

n

n

nn

u

2

1 2

Fig. 4. Feasible solution example showing that with k thresholds our techniques
cannot give an approximation ratio better than 3 + 1/k. The instance is complete,
but we have chosen not to show edges that have little impact on the calculations.

radius-based approximation algorithm can beat a factor of three.

Using fixed radii

Our factor four algorithm chose between a singleton cluster and a fixed cluster
radius of 1/2. A more general algorithm might select the cluster radius based
on the values of the x distance relation. We saw that even if this option were
available, we could not achieve an approximation factor better than three. We
now show that in some sense our algorithm is the best possible if the radius
candidates—call them thresholds—for cluster balls are specified in advance.

Theorem 6 Given a set of thresholds, of which k are greater than 1/4, then
our analysis techniques, which rely only on the solution being feasible, cannot
be used to show an approximation ratio better than 3 + 1/k.

PROOF. Consider the analysis of the following feasible solution, shown in
Fig. 4, to the MinDisAgree LP, which could occur in a single iteration of
region growing.

Imagine that there are n2 vertices at distance D = k/(3k + 1) − ε from u,
and that for each threshold di in the range (D, 1−D] there are n vertices at
distance di + ε. The edges between the D-vertices and the all of the di + ε-
vertices are positive. There are also n vertices at distance di − ε for each di

greater than D (including those thresholds greater than 1 − D); they have
negative edges to the D-vertices. Finally, every edge between u and any other
vertex is positive. We ignore all other edges as their costs are dominated by
the edges incident to the D-vertices.
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For every threshold that lies in the range (1/4, D), the number of mistakes
is dominated by n2 and the LP cost is dominated by Dn2. Therefore the
integrality gap is 1/D, which tends to → 3 + 1/k as ε→ 0.

For every other threshold, the LP cost is dominated by the edges between the
n2 D-vertices and the vertices in the other sets. The LP cost of the edges to
di − ε and di + ε could be as low as

n3[(di + ε)−D] + n3[1− (di − ε)−D] = n3[1 + 2ε− 2D]

→ n3 · k + 1

3k + 1
as ε→ 0 .

The LP cost of the negative edges between the D-vertices and the di − ε-
vertices, where di > D, could be zero. For each threshold between D and
1 − D, of which there are k′ ≤ k, the number of mistakes is (k′ + 1)n3.
Therefore the ratio of mistakes to LP cost could be as high as

k′ + 1

k′
· 3k + 1

k + 1
,

which is 3 + 1/k when k′ = k, and greater otherwise. The total LP cost
associated with thresholds whose distance is greater than 1 − D may be no
greater than before. Since the number of mistakes is at least (k′ + 1)n3, we
cannot prove an approximation ratio any better than 3 + 1/k. 2

Note then that our factor four algorithm, which has one threshold greater
than 1/4, is the best we could hope for with these techniques and just one
threshold.

3.3 The connection to feedback edge sets

Using an alternative linear programming formulation, we demonstrate the link
between MinDisAgree in complete graphs and a feedback edge set problem.

Polygon inequalities are generalizations of triangle inequalities: the length of
one edge in a polygon is at most the sum of the lengths of all the other edges
in the polygon. A full set of polygon inequalities is equivalent to a full set of
triangle inequalities. Our new formulation, however, contains only one type of
polygon inequality: the length of a negative edge is at most the sum of the
lengths of edges in a positive path connecting its endpoints. More precisely,
for all i1, i2, . . . , im such that +(i1, i2), . . . , +(im−1, im), but −(i1, im),

m−1
∑

j=1

xij ,ij+1
− xi1,im ≥ 0 .
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minimize
∑

+(ij)

xij +
∑

−(ij)

(1− xij)

subject to
m−1
∑

j=1

xij ,ij+1
− xim,i1 ≥ 0 for all C(i1, . . . , im)

xij ≤ 1 for all −(ij)

xij ≥ 0 for all i, j

(6)

We call this type of polygon a negative edge with positive path cycle (NEPPC),
and denote it by C(i1, . . . , im). Elsewhere [9], NEPPCs have been called erro-
neous cycles.

We now show that the NEPPC constraints are a sufficiently large set that
they imply all the triangle (inequality) constraints for optimal solutions to
the linear program (6). The following simple observation, together with the
consequent lemma, is the key.

Observation 2 In an optimal solution to the linear program (6), a positive
edge either has length zero, or it is part of some tight NEPPC constraint.
Likewise, an optimal negative edge either has length one or is part of some
tight NEPPC constraint.

Lemma 4 In an optimal solution to LP (6), the polygon inequalities apply to
every cycle of positive edges.

PROOF. Consider a positive path p that is incident to both endpoints of
positive edge e, with xe > xp in an optimal solution (abusing notation). Since
the length of e cannot be zero, Observation 2 tells us that e lies in some tight
NEPPC c. Assume for the moment that c does not share any vertices with
p except for the endpoints of e. Now consider the NEPPC c′ that is formed
by replacing e in c with p. Since c was tight, but p is shorter than e, c′ must
violate its NEPPC inequality.

It may be that p and c share some vertices other than the endpoints of e. If
so, then form a NEPPC c′ by building a positive path p′ in the following way,
where ν refers to the negative edge in c (see also Fig. 5).

1. Start at one endpoint of ν and walk along c until it intersects p.
2. Now start at the other endpoint of ν and walk in the other direction

along c until it intersects p.
3. Complete the path p′ by walking along the subpath of p that joins

the intersection points, but does not include e.

Note that the intersection points above are well-defined, as p must meet c at
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Fig. 5. Construction of a new NEPPC: Positive edge e is part of a tight NEPPC c,
which has one negative edge ν; edge e is also in a cycle with positive path p.

the very least at the endpoints of e. Clearly p′ and ν form an NEPPC c′, but
the length of p′ is bounded by the sum of the lengths of c − e − ν and of p.
Since c was tight,

xν = xc−ν = xc−e−ν + xe > xc−e−ν + xp ≥ xp′ ,

hence the NEPPC inequality for c′ is breached. 2

Corollary 1 In every triangle of positive edges the triangle inequalities are
satisfied in an optimal solution to (6).

We are now able to prove our main result of this section.

Theorem 7 The linear program with only NEPPC polygon constraints (6) is
equivalent to the triangle inequality program (3), in the sense that their sets
of optimal solutions are the same.

PROOF. We first show that any optimal solution to (6) must satisfy the
triangle inequalities.

Although the corollary above deals with all-positive triangles, there are still
a number of different cases and configurations to consider. We therefore leave
the details to the reader, but note the following general principles of the proof
technique.

Consider some triangle in the graph that is not covered by the corollary above:
it must have at least one negative edge. If a negative edge has length one, then
some of the triangle inequalities are trivially satisfied. Otherwise, the nega-
tive edge is contained in a tight NEPPC. The combination of tight NEPPCs
and positive triangle edges allows us to use either the NEPPC constraints or
Lemma 4 to be sure that the triangle inequality constraints are observed.
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minimize
∑

+(ij)

xij +
∑

−(ij)

x′
ij

subject to
m−1
∑

j=1

xij ,ij+1
+ x′

im,i1
≥ 1 for all C(i1, . . . , im)

xij ≥ 0 for all +(ij)

x′
ij ≥ 0 for all −(ij)

(7)

Finally, since the linear program (6) is a relaxation of the original (3), the two
formulations must have the same set of optimal solutions. 2

We note that one can also prove an integral equivalent to Theorem 7: any
optimal {0, 1} solution to the NEPPC constraint LP is an optimal solution to
the MinDisAgree problem, in a complete graph.

If we replace each (1 − xij) term with x′
ij for each negative edge, we obtain

an LP with only positive coefficients (7), in which the x′
ij ≤ 1 constraints are

unnecessary. In any feasible solution to (7), the sum of the terms around any
NEPPC is at least 1. If the variables xij and x′

ij are binary, then we have the
following interpretation: around any cycle that contains exactly one negative
edge we must select at least one edge. That is, we need a feedback edge set
for the set of cycles with exactly one negative edge. If the cycles of interest
were those with at least one negative edge, we would already have a factor
two approximation algorithm [13]. This feedback edge set interpretation might
lead to an algorithm with approximation ratio better than four.

As a final comment, we note that there is also some similarity to the notion
of balance in signed graphs, as used in the social sciences [14]. Each person
in some group is represented by a node in a graph; there is an edge between
a pair of nodes if there is some strong relationship between the people, with
the sign of the edge reflecting the nature of the relationship. A group, and
therefore the graph, is called balanced if every cycle in the graph contains an
even number of negative edges. There exist linear time algorithms to deter-
mine whether a signed graph is balanced. However, some graphs are neither
completely balanced nor completely unbalanced and there is ongoing research
to measure the degree of balance in them.
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4 Hardness of approximation

4.1 MinDisAgree in general graphs

We first show that minimum multicut reduces in an approximation preserving
way to MinDisAgree. Note that Bansal et al. [6] make a similar observa-
tion, though they use the all-pairs version of multicut, usually called multiway
cut, for the reduction. Reducing from the more general multicut problem, as
other groups have also done independently [8,9], provides us with evidence of
the difficulty of approximating MinDisAgree within any constant factor. In
contrast, multiway cut has approximation algorithms with performance ratio
a very small constant, 1.3438 being the current best [15,16].

Theorem 8 Minimum multicut reduces in an approximation preserving way
to MinDisAgree.

PROOF. Given a graph G with k pairs (si, ti), in which each si must be
separated from each ti, form an instance H of MinDisAgree. The edges
of G become positive edges in H with unit weight. For each i, 1 ≤ i ≤ k,
we add a (negative) edge between si and ti with weight −W for some large
positive integer W , say W = n2. We can make the instance unweighted by
replacing a negative edge of weight −W by W parallel length two paths; each
path has a fresh intermediate vertex, with one edge of weight 1 and the other
of weight −1. Clearly, the minimum cost clustering must have si and ti in
different clusters for every i. The cost of the solution is simply the number of
positive edges that lie between clusters, which is the same as the cost of the
multicut. 2

Since minimum multicut is known to be APX-hard [17], we conclude that
MinDisAgree is also APX-hard. Furthermore, an improvement over the
O(log n) approximation ratio, which we matched in Section 2.1, would solve
one of the major open problems in the area of approximation algorithms: Can
minimum multicut be approximately solved within a factor in o(log n)?

We also note the following fact concerning the perceived difficulty of multicut
which does not seem to have been explicitly pointed out in the literature. It
is well known that minimum edge deletion graph bipartization (also known
as min uncut) reduces to minimum multicut in an approximation preserving
way. The factor O(log n) approximation for min uncut works by reducing it
to a multicut instance on which the GVY algorithm is run [11]. It is implicit
in Khot’s work [18] that a certain conjecture about Unique games would re-
sult in min uncut being NP-hard to approximate within any constant factor.
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Therefore, under the same conjecture, it is NP-hard to approximate minimum
multicut, and therefore also MinDisAgree, within any constant factor.

Emanuel and Fiat [9] also present an approximation preserving reduction in
the reverse direction to Theorem 8, from MinDisAgree to minimum mul-
ticut. This shows that the approximability of MinDisAgree is identical to
that of the fundamental minimum multicut problem.

In the next section, we study the maximization version. As a corollary of our
hardness result for MaxAgree, we will also record an explicit constant factor
hardness for MinDisAgree (Theorem 10).

4.2 MaxAgree in general graphs

Bansal et al. [6] provided evidence for the APX-hardness of MaxAgree by
showing that a PTAS for MaxAgree would lead to a polynomial time al-
gorithm for O(nε) coloring a 3-colorable graph for every ε > 0. However,
the issue of a concrete NP-hardness result for approximating MaxAgree

remained open and is resolved here.

Theorem 9 For every ε > 0, it is NP-hard to approximate the weighted
version of MaxAgree within a factor of 79/80 + ε. Furthermore, it is NP-
hard to approximate the unweighted version of MaxAgree within a factor
of 115/116 + ε.

PROOF. We reduce from MAX 3SAT, which is NP-hard to approximate
within a factor of 7/8+ε, even on satisfiable instances [19]. Let φ be an instance
of MAX 3SAT with variables x1, x2, . . . , xn and clauses C1, C2, . . . , Cm. We also
assume that for each i, xi and x̄i each appear in the same number of clauses;
this is a minor restriction and the inapproximability result for MAX 3SAT
stands.

Construct a graph G with integer edge weights from the instance φ as follows.
The vertices of G are a root vertex r, variable vertices xi, x̄i for 1 ≤ i ≤ n,
and clause vertices c1j , c2j, c3j for each clause Cj, 1 ≤ j ≤ m. The edges and
their weights are defined as follows (see also Fig. 6):

• The root r is connected to each cpj, p = 1, 2, 3, by a weight 1 edge, and
is connected to xi and x̄i by a weight Bi edge, where Bi is the number of
clauses in which xi (and x̄i) appears.
• A weight −Bi edge connects xi and x̄i for each i = 1, 2, . . . , n.
• The vertices c1j, c2j , c3j corresponding to each clause form a triangle with

weight −1 edges.
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Fig. 6. Reduction from MAX 3SAT to MaxAgree instance. The jth clause has
three vertices c1j , c2j , c3j . The ith variable has two vertices xi, x̄i. Solid lines rep-
resent positive edges, dashed negative edges; thick lines represent edges of weight
Bi.

• Finally, if the pth variable in clause Cj is xi, for p = 1, 2, 3 (assuming some
fixed ordering of variables in each clause), then a weight −1 edge connects
cpj with xi.

We now prove that the optimum value of G as an instance of MaxAgree is
9m + OPTφ, where OPTφ is the maximum number of clauses of φ that can be
simultaneously satisfied.

To that end, we show that any clustering can be modified to a specific format,
still maximizing the number of agreements. Since the only positive edges in-
cident to xi and x̄i are the edges joining them to r, each of xi and x̄i can be
assumed to be either a singleton cluster or part of the cluster containing r. If
both xi and x̄i are in the cluster with r, then we can make one of them, say
xi, a singleton and the number of agreements will not decrease, since we will
lose Bi for the edge (r, xi), but will gain Bi for the edge (xi, x̄i). Similarly, if
both xi and x̄i are singletons, we can place xi in the cluster containing r —
we will gain a value of Bi for the edge (r, xi) and might lose at most a value
of Bi for the edges connecting xi to the appropriate cpjs.

Once in this format, a clustering corresponds to a truth assignment to the
variables of φ in a natural way: variable xi is true if it is in a singleton cluster,
but false if it is in the root-cluster. Now for each clause Cj , we can cluster the
vertices cpj, p = 1, 2, 3, in the following way without decreasing the number
of agreements. If Cj is not satisfied by the above assignment, which means
all its literals are in the r-cluster, we place each cpj in a singleton cluster for
p = 1, 2, 3. If Cj is satisfied, say because its first literal is set true, then we
place c1j in the r-cluster, but c2j and c3j in singleton clusters. Consequently,
we have four agreements: the negative edges between the cpjs and the positive
edge (c1j , r). The negative weight edges between c1j , c2j , and c3j ensure that,
regardless of how many of Cj’s literals are true, we always achieve the same
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number of agreements whenever Cj is satisfied.

It is easily seen that the total weight of correctly clustered edges equals

( n
∑

i=1

2Bi

)

+ 6m + m∗ = 9m + m∗ ,

where m∗ is the number of clauses satisfied by the above assignment. Therefore
the optimum value of this instance of MaxAgree is 9m+OPTφ. The claimed
result follows since distinguishing between the cases OPTφ = m and OPTφ ≤
(7/8 + ε)m is NP-hard [19].

In order to obtain a result for unweighted (±1)-labeled graphs, we replace each
positive (resp. negative) edge of weight Bi (resp. −Bi) by Bi length-two paths
whose edges have weights 1, 1 (resp. 1,−1), as in the proof of Theorem 8. Now,
if a weight Bi (positive or negative) edge is correctly clustered, then all the
2Bi newly constructed edges agree with the labeling; otherwise we get only
Bi agreements. Using this gadget, we conclude that there is a 115/116 + ε
inapproximability factor for the unweighted version of MaxAgree; we omit
the straightforward calculations. 2

Since the number of disagreements in an optimum clustering is simply the sum
of the weights of edges minus the number of agreements, the above reduction
also establishes the following.

Theorem 10 For every ε > 0, it is NP-hard to approximate both the weighted
and unweighted versions MinDisAgree within a factor of 29/28− ε.

4.3 MinDisAgree in complete graphs

In addition to their constant factor approximation algorithm, Bansal et al. [6]
proved the NP-completeness of MinDisAgree on complete graphs. Their re-
duction does not yield any hardness of approximation result, but they do
show that the maximization version admits a PTAS on complete graphs. The-
orem 11, nicely completes the picture of the complexity of the problem on
complete graphs, complementing our factor four approximation algorithm.

Theorem 11 There exists some constant c > 1 for which it is NP-hard to
approximate MinDisAgree on complete graphs within a factor of c.

PROOF. We give a reduction from the max 2-colorable subgraph problem
on bounded degree 3-uniform hypergraphs. Here the input is a 3-uniform hy-
pergraph H = (V, S) where each hyperedge in S = {e1, e2, . . . , em} consists
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Fig. 7. Part of the graph G constructed from the hypergraph H, showing a flower,
its petals, and an α, β edge pair.

of three elements of V = {v1, . . . , vn} with the added restriction that each
element of V occurs in at most B hyperedges, for some absolute constant B
(so that m ≤ Bn/3). The goal is to find a 2-coloring of V that maximizes the
number of hyperedges that are split by the coloring, that is, are bichromatic.
It is known that for some absolute constants γ > 0 and B (integer), given
such a 3-uniform hypergraph it is NP-hard to distinguish between the follow-
ing two cases: (i) H is 2-colorable, i.e., there exists a 2-coloring of its vertices
under which no hyperedge is monochromatic, and (ii) every 2-coloring of V
leaves at least a fraction γ of hyperedges in S monochromatic. This follows for
example from the reduction used to show the hardness of max 3-set splitting
in [20]. The starting point for that reduction is a constraint satisfaction prob-
lem, called MAXSNE4 in [20], that is shown to be hard to approximate in [19].
The hardness result from [19] also holds under a bounded occurrence restric-
tion, and therefore the 3-uniform hypergraph constructed by the reduction
in [20] can also be assumed to have degree bounded by an absolute constant
B.

The first step in the reduction is to construct a graph G from the hypergraph
H . This step is analogous to the reduction from MAX 3SAT to 3-dimensional
matching in Section 9.4 of [21] and is sketched in Fig. 7. Specifically, for each
vi ∈ V , we construct a flower structure Fi with 4si vertices Ui, where si ≤ B
is the number of hyperedges in which vi occurs. The set Ui consists of 2si

vertices that form an induced cycle, together with 2si petal vertices each of
which is adjacent to the two endpoints of one of the 2si cycle edges. Let
Oi (resp. Ei) be the petal vertices with odd (resp. even) indices according
to an arbitrary cyclic ordering of the vertices as 1, 2, . . . , 2si. One can then
pick two distinct collections of si vertex-disjoint triangles in the graph Fi by
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picking either all the triangles containing the petal vertices in Oi or all those
containing the petal vertices in Ei — these collections are accordingly called
odd and even collections respectively. The choice of one of these collections
will capture which one of the two colors given to the vertex vi—this is the crux
of the approach guiding the reduction. Now, corresponding to each hyperedge
ej = (vj1, vj2 , vj3), we create two independent edges αj , βj in G. We add an edge
from each endpoint of one of them, say αj , to the vertex in Oj1 that corresponds
to the occurrence of vj1 in ej . Recall that there are sj1 vertices in Oj1 so a
different one of them will be used for each connection corresponding to each
of the sj1 different hyperedges containing vj1 . We make similar connections
between the endpoints of αj and appropriate vertices of Oj2 and Oj3. The
endpoints of the second edge βj are similarly connected to appropriate vertices
in the even petal sets Ej1 , Ej2 , and Ej3.

Denote by N the total number of vertices in G: clearly N =
∑n

i=1 4si + 4m =
16m. By construction, G is 4-regular and therefore the number of edges in G,
denoted by M , is 2N—the crucial point is that G is sparse and M = O(N).
Finally, we construct an instance of MinDisAgree on a complete graph on
N vertices by labeling all edges in G as positive and the remaining edges as
negative — let us denote by I the resulting ±1-weighted copy of KN . This
completes our reduction, and clearly the transformation from the 3-uniform
hypergraph H to I can be computed in polynomial time.

Consider any clustering, call it C, of the vertices of I, or equivalently of G. Let
the value of a cluster be the number of edges of G within the cluster minus
the number of non-edges of G within the cluster—that is, the correlation
associated with edges inside the cluster. Define the value of the clustering C,
denoted value(C), to be the sum of the values of all the clusters in C. It is easy
to verify that the number of disagreements (or mistakes) in the clustering C,
denote it DisAg(C), satisfies DisAg(C) = M − value(C).

We now define the value valC(v) of a vertex v, with respect to the clustering C,
to be the value of the cluster containing v divided by the number of vertices
in that cluster. This way the value of a cluster is equally divided among its
constituent vertices. For example, if a vertex is in a singleton cluster, its value
is 0, if it is in an edge cluster, its value is 1/2, if it belongs to a triangle cluster,
its value is 1, and so on. Note that value(C) equals the sum of the values (under
C) of all the vertices.

(i) H is 2-colorable

We first claim that if H is 2-colorable, then there is a clustering C∗ of G in
which every vertex has value 1, and therefore value(C∗) = N . In what follows,
a diamond refers to the complete graph K4 on four vertices minus one edge.
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Let f : V → {Red, Blue} be a 2-coloring under which every hyperedge of H
is bichromatic. First, we pick the following clusters. For each flower structure
Fi, we pick the si triangles of the odd collection (those containing the vertices
in Oi) if f(vi) = Red, and those belonging to the even collection (the ones
containing the vertices in Ei) if f(vi) = Blue. We know each hyperedge ej

is bichromatic, so assume for definiteness that two of its vertices vj1, vj2 are
colored Red and the third one vj3 is colored Blue. Then, for this j, we pick
two clusters, one a triangle containing the edge αj together with its neighbor
in Oj3, and the other a diamond containing the edge βj together with its
neighbors in Ej1 and Ej2 .

It is easy to check that the clustering C∗ defined above covers all the vertices
of G. Since each vertex of G is in either a triangle or a diamond cluster, it has
a value of 1 and value(C∗) = N , as claimed.

(ii) H has at least γ fraction of edges monochromatic

We now wish to argue that if every 2-coloring of H leaves γm hyperedges
monochromatic, then every clustering C′ of G must have value at most (1−δ)N
for some δ > 0. The following claim is crucial to understanding how good
clusterings (those with large value) of G must appear.

Claim: In any clustering of C of G, the value of every vertex is at most 1,
and if valC(v) = 1, then v must belong to a cluster which is either a triangle
or a diamond. Moreover, the supremum (1− ρ) of the non-triangle and non-
diamond vertex values is strictly less than 1.

The claim can be proved by straightforward inspection of the structure of
the graph G since it is so sparsely connected—we omit the details. The claim
asserts that ρ > 0; in fact one can show that ρ = 0.2, but all we require is
that ρ is a strictly positive constant.

Now suppose there exists a clustering C′ with value(C′) = (1− δ)N . A simple
counting argument shows that we must have at least

n− δN/ρ = n− 16δm/ρ

values of i for which every vertex in the flower structure Fi has value equal to
1. Call the vertex vi ∈ V for each such i good. Also call an hyperedge of H
good if all three of its vertices are good. Since there are at most 16δm/ρ bad
vertices in V , there are at most 16δmB/ρ bad hyperedges.

Suppose we could prove that there is a 2-coloring of H under which every good
hyperedge is bichromatic, then, since every 2-coloring of H leaves at least γm
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monochromatic hyperedges, we would have 16δB/ρ ≥ γ. As a consequence,

value(C′) = (1− δ)N ≤ (1− ζ)N ,

where ζ = ργ/(16B), and there would be a gap of N versus (1− ζ)N for the
value of the best clustering in the two cases. Recalling that

DisAg(C) = M − value(C) = 2N − value(C) ,

we would get a gap of N versus (1 + ζ)N for the number of disagreements in
the best clustering. Since ζ > 0 this will prove the theorem.

Therefore it only remains to prove that there is a 2-coloring g of H under
which every good hyperedge is bichromatic. Consider a good vertex vi: we
know all internal cycle vertices in the flower structure Fi have value 1. Since
there is no diamond structure containing any of these vertices, the claim tells
us they must all be covered by vertex-disjoint triangles. There are only two
ways to achieve this: either the triangles containing the odd petals Oi are
picked, or those containing the even petals Ei are picked. We set g(vi) = Red

in the former case and g(vi) = Blue in the latter case (the colors given to
the bad vertices are of no concern). We now prove that every good hyperedge
is bichromatic under this coloring. Indeed, let ej be a hyperedge on three
good vertices vj1 , vj2, vj3, and suppose all of them are colored Red under g.
Let w1 ∈ Ej1 be the vertex that is adjacent to the endpoints of βj . Since
valC′(w1) = 1, w1 must be clustered together with the edge βj. The same holds
for the analogous vertices w2, w3 from Ej2 and Ej3 respectively. But now w1

belongs to a cluster that contains at least five elements (namely the endpoints
of βj and w1, w2, w3) and therefore w1 cannot have value 1, a contradiction.
We conclude that all good hyperedges are bichromatic under g and the proof
is complete. 2
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