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A b s t r a c t  

We consider a model of competi t ive recommendation 
systems proposed by Drineas et al. [4]. In recommen- 
dation systems (e.g., for books or movies), the system 
tracks which product  each user chose in the past, and 
tries to deduce which other products an asking user is 
likely to be satisfied with. Obviously, recommendation 
systems can be effective only for users who share pref- 
erences with many other users. Such users are said to 
belong to a "dominant type." Current  approaches to 
on-line recommendat ion systems involve using Singular 
Value Decomposition (SVD), which is computat ionally 
intensive and, more important ,  often applicable only un- 
der additional strong conditions. Specifically, correct- 
ness is guaranteed in [4] only if users of different domi- 
nant types essentially do not share a product  they like 
(" type separabili ty"),  and only if the number of users 
in non-dominant  types is significantly smaller than the 
number of users in dominant  types ("gap assumption").  
The complexity of tha t  algorithm is O(mn) ,  where m 
and n denote the number  of users and products, re- 
spectively. In this paper,  we show tha t  in fact, very 
simple combinatorial  algorithms can make good recom- 
mendations without using SVD. Our algorithms'require 
neither the type separability nor the gap assmnption, 
they are natural ly amenable to distibuted computat ion,  
and their complexity is lower. In particular, the paper  
presents an O(m + n) t ime centralized algorithm and 
a distributed algorithm tha t  can be implemented in a 
peer-to-peer model even in the presence of adaptively 
colluding malicious players, with only logarithmic over- 
head. 
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1 I n t r o d u c t i o n  

We consider an abstract ion of the recommendation 
problem proposed by [4, 6], that  can be described 
informally as follows. There are m user's and n products. 
Given a product,  a user can tell whether he considers 
it to be good. A recomlnendation algorithm tracks 
the choices of all users; in a basic step, the algorithm 
recommeu, ls a product  to a user and asks what  the user 
thought  about  the product.  The task of the algorithm 
is to recommend a good product  to most users, and its 
performance measure is the number  of recommendat ions 
made to a user until a good product  is recommended, as 
well as the number of users that  are eventually satisfied. 
We believe tha t  most readers have been exposed to 
commercial recommendat ion systems in one form or 
another  (say, book recommendations in Amazon).  

Obviously, recommendat ion systems (a.k.a. collab- 
orative filtering systems) may  only be useful to a user 
who shares preferences with others: a user with eso- 
teric preferences cannot rely on others to help him find 
a product  he likes. In [4], this proper ty  is captured as 
follows. At the outset, each user is assumed to have a 
grade for each product,  so tha t  each user is represented 
by his vector of grades. (The grades are revealed in an 
on-line fashion, but are assumed to exist always.) To 
model popular  preferences, it is assumed tha t  there ex- 
ists a set of k "canonical" vectors (where k is a small 
constant),  such tha t  most user vectors are the result of 
adding random noise to one of the canonical vectors. 
Such a user is said to belong to a dominant type. The 
assumption tha t  most users belong to a small number  
of dominant types appears  to be a reasonable simplifi- 
cation; the algorithm aims at satisfying these users. 

The recommendat ion system proposed in [4] is 
a centralized algorithm based on matrix reconstruc- 
tion [2, 12]. The algorithm of [4], denoted MR hence- 
forth, can be roughly described as follows. MR first 
chooses a small set of users and asks them to t ry  all 
products  and grade them. Based on these responses, 
each remaining user is asked to t ry  a carefully chosen 
small set of products; the lat ter  responses are used to 
associate users with types, which in turn are used to rec- 
ommend products  to users. It  is shown that  MR guaran- 
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tees (with high probability) tha t  each user fl'om a don> 
inant type gets a good recommendation. The heart of 
MR is a low-rank approximation of the full user-product 
grade matr ix  (the low rank is k, the number of domi- 
nant types). This approximation is based on Singular 
Value Decomposition (SVD). The algorithm works only 
when a few severe conditions are met. First is the type 
separability assumption, which requires that  the canon- 
ical vectors be nearly orthogonal; this means that  two 
users from different dominant types essentially do not 
share any product they both like. Second is the gap 
assumption, which says that  any non-dominant type is 
far less popular than any dominant type. To complicate 
things further, MR must know the number of dominant 
types in order to produce correct results. Lastly, the 
computational  complexity of the algorithm is O(m'n). 

In this paper we show, surprisingly, tha t  the al- 
gebraic approach can be abandoned for this particu- 
lar problem without any loss in the quality of the re- 
suits, and while dramatically simplifying the algorithms. 
Moreover, both type separability and gap assumptions 
turn out to be unnecessary. Most important ,  we show 
tha t  a distributed peer-to-peer solution is possible, even 
in the presence of a very powerful adversary. 

Intuitively, the basic idea behind our algorithms is 
the use of "best-seller lists" via random sampling. Our 
distributed algorithm is based on techniques developed 
in the context of auction systems like eBay [1]. 

We present the following results. First, we give a 
centralized algorithm tha t  runs in t ime O(m + n) as- 
suming that  most users fall within one of k = O(1) large 
types (but neither type separability nor the existence of 
a gap are assumed). We note tha t  f t(n + m) is an ob- 
vious lower bound on the number of recommendations 
made by aW recommendation algorithm even when all 
users are identical (i.e., k = 1): if only one of the prod- 
ucts is good, then f~(r~) products must be recommended 
by the algorithm until that  good product is discovered; 
and in addition, the algorithm must recommend to each 
of the rn users at least one good product.  

Our main result is a distributed solution to the rec- 
ommendation problem. We show that  under any asyn- 
chronous schedule, the total  number of recommenda- 
tions required to satisfy any set of users with shared 
interest is O('n + m logm) with high probability, com- 
ing within a logarithmic factor of the optimal. Our 
Mgorithm can tolerate malicious users in the form of 
an omniscient, adaptive, Byzantine adversary. (This is 
an important  consideration for distributed peer-to-peer 
systems.) Another important  feature of the algorithm is 
that  it does not require users to be rigidly classified into 
types: users may have any preference vector whatsoever 
without changing the algorithm; only the performance 

will be affected, in the sense tha t  users with esoteric 
preferences will have to work more. 

We note that  our algorithms imply that  type sepa- 
ration enables full matr ix  reconstruction, but it is not 
required for competit ive recommendations.  
R e l a t e d  w o r k .  Most prior research on recommenda- 
tion systems focused on a centralized, off-line version 
of the problem, where the algorithm is presented with 
a lot of historical preference data,  and the task is to 
generate a single recommendation that  maximizes the 
utility to the user. This is usually done by heuristically 
identifying clusters of users [10] (or products [11]) in the 
da ta  set, and using past grades by users in a cluster to 
predict future grades by other users in the same cluster. 
SVD was shown also to be effective for the off-line prob- 
lem [12]. Some of these systems enjoy industrial success, 
but they are known to perform poorly when prior da ta  
is less than plentiflfi [13], and they are extremely vul- 
nerable even to mild at tacks [7, 8]. Canny [3] gives a 
distributed secure and private SVD computat ion for the 
offqine version of the problem. 

Theoretical studies of recommendation systems 
usually take the latent variable model approach: a 
stochastic process is assumed to generate noisy obser- 
vations, and the goal of an algorithm is to approxi- 
mate  some unknown parameters  of the model. Kumar  
et al. [6] s tudy the off-line problem for a model where 
preferences are identified with past choices (purchases). 
In this model there are clusters of products. Each user 
has a probability distribution over clusters; a user first 
chooses a cluster by his distribution, and then chooses 
a product uniformly at random from that  cluster. The  
goal is to recommended a product from the user's most 
preferred cluster. Kleinberg and Sandler [5] generalized 
this model to the case where the choice within a cluster 
is governed by an arbi trary probability distribution, and 
also consider the mixture model, in which each cluster 
is a probability distribution over all products. Azar et 
al. [2] consider a model where there exists an unknown 
user-product preference matr ix  which can be approxi- 
mated by a low-rank matrix. The system observes this 
matr ix  only after its entries were subjected to random 
additive noise and then to random omissions. They use 
SVD to reconstruct the original preferences. 

In this work we use the on-line model of recommen- 
dation systems, as proposed in [4], which is discussed 
above, and in further detail in Section 5. We note that  
measures and techniques used for off-line Mgorithms do 
not readily apply to the on-line scenario, since the off- 
line case ignores the crucial interaction between the al- 
gori thm and the user; this feedback necessarily skews 
the statistical properties of the observed data. 
P a p e r  o r g a n i z a t i o n .  We define the recommendation 
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problem and our model in Section 2. In Sections 3 and 4 
we give our centralized and distributed algorithms, re- 
spectively. In Section 5 we present a detailed discussion 
of out' model in the context of previous models. 

2 F o r m a l  M o d e l  

T h e  r e c o m m e n d a t i o n  p r o b l e m .  Let us begin by 
defining the recommendation problem. Assmne the 
existence of a se t /b /o f  users and a set P of products. 
Denote I/L/] = m and I~I = n. Each user has a numeric 
grade for each product. In most of this paper, we 
will assume for the sake of simplicity that  the grades 
are binary, i.e., each user views some products as good 
and the rest as bad (more on that  in Section 5.1). 
We use good(u) to denote a function mapping each 
user u E L/ to  the set of products u views as good. 

A recommendation algo~ithm has a single primitive 
operation, in which it atomically outputs a product 
name to a user ("making a recommendation"), asks 
the user for his rating of that  product (good or bad), 
and gets the user's response as input. When we say "u 
probes p" we mean that the algorithm recommends the 
product p to u and thus learns whether p E good(u). We 
define the set of products recommended to a user to be 
the algorithm's recommendation to that user. We want 
algorithms that recommend a small set of products to 
each user, and so that,  with high probability, a large 
fraction A of the users will find a good product in the 
set recommended to them. 

The performance of an algorithm for the recommen- 
dation problem is evaluated in two ways. The tradi- 
tional time complexity measures the worst-case number 
of RAM-model steps taken until the algorithm termi- 
nates. In addition, we measure the recommendation 
complexity, which is the total number of times users 
test recommended products. We further define the in- 
dividual recommendation complexity, which is the worst- 
case number of products a single user tests. The rec- 
ommendation complexity is obviously a lower bound on 
the time complexity, and our algorithms have essentially 
equal recommendation and time complexities. 
T h e  d i s t r i b u t e d  m o d e l .  We now turn to our model 
of a distributed system. Each user maintains a log of 
his probe results. An execution of the system consists 
of a sequence of user steps. In each atomic step, a user 
may send messages to other users asking them about 
their probe histories, get results back, and optionally 
probe a product (and keep the result in his local history 
record). 1 In contrast to the centralized model, where 

1We remark that in our distributed algorithm, only a single 
user is consulted at a step, and a valid response consists of at most 
one product, so communication complexity is kept at minimum. 

tile algorithm can choose which user takes the next step, 
in the distributed model we assume that the order of 
user probes is under the control of an external schedule; 
the role of a distributed algorithm is limited to directing 
the user, as to which user to consult with and what 
product to probe during a step, when the user's turn 
comes up according to the schedule. 

We assume that some users are honest and some 
are dishonest. Honest users are required to follow the 
protocol, including, in particular, answering questions 
truthfully. Dishonest users are allowed to behave in 
an arbitrary (Byzantine) fashion, including giving false 
reports on their probes and colluding. 

Formally, an execution of a recommendation algo- 
rithm is uniquely determined by the algorithm, the se- 
quence of coins flips, and by three external entities: 

1. The user schedule that  determines the order in 
which users take steps. 

2. The dishonest users and the good(.) function. 
3. The adversary that  determines the behavior of the 

dishonest users. 
The adversary we consider is the extremely powerful 

adaptive Byzantine adversary. Formally, an adversary 
is a function that takes the set of dishonest users, the 
good(.) function, the schedule and a random binary 
sequence, and maps them to a sequence of actions for 
the dishonest users, telling them exactly what to do 
in each step. The random binary sequence represents 
the entire sequence of coin flip outcomes during the 
execution, including even future coin flips. Note that  
with this infornmtion, the adversary can reconstruct the 
entire state of the system at any point in time, and use 
any of this information to choose the next move for each 
dishonest user. 

An operating enviwnment consists of a user sched- 
ule, a set of dishonest users, a good(.) function, and 
an adversary. The purpose of the operating environ- 
ment is to factor out all of the nondeterministic choices 
made during an execution, leaving only the probabilistic 
choices to consider. When we deal with probabilities or 
compute expected values, we fix an operating environ- 
ment and consider the distribution of executions with 
this operating enviromnent induced by the coin flips. 
We note that  the user schedule may schedule steps by a 
user long after the user has found a good product and 
halted, in which case the user just skips its step. 

Each execution of the system yields a probe sequence 
consisting of the sequence of products probed during 
the execution. When we compute the recommendation 
complexity of a probe sequence, we count only the 
number of probes by the honest users, and ignore the 
probes by the dishonest users. Our goal is to minimize 
the recommendation complexity for the honest users. 
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A l g o r i t h m  .Acntr (k, if) 
Let K = k In(k/@. 
Select K users a random. Call these users 

the committee. 
Let each committee member u probe all n 

products, attd let p~ be the product u views 
as best (break ties arbitrarily). 

Output  {p l , . . . , p / , ' }  as the set of recom- 
mended products. 

Figure 1: The centralized algorithm Acntr(k,3,) for 
integer k > 0 and error 3, > O, 

3 C e n t r a l i z e d  a l g o r i t h m  

This section presents a centralized solution to the rec- 
ommendat ion problem. The algorithm is a simplifica- 
tion of the algorithm in [4], but it does not make the 
"gap" and "type separability" assumptions (see below). 
In this section we assume that  all users are honest; dis- 
honest users are considered in the next section. 

Figure 1 gives the centralized algorithm tha t  takes 
as parameters  an integer k >_ 0 and a real number 
0 < 3' <- 1 and outputs  recommendations for each user. 
The algorithm first selects a random sample of k In(k/7)  
users called the "committee," and recommends all n 
products to each committee member.  Each committee 
member  chooses the product he liked best, and these 
k ln(k/T ) are recommended to all remaining users3 

To analyze the algorithm we assume that  users 
can be parti t ioned into equivalence classes called types, 
where each equivalence class represents a set of users 
with similar preferences. The success of the algorithm 
depends on the abundance of large types. Formally, we 
have the following definitions. 

DEFiNiTiON 3.1. A type T is a set of users U(T) and a 
nonempty set of products P(T)  satisfying the condition 
that the set of 9ood products for a user in U(T) is 
exactly P(T) ,  namely, 

U(T) C {u E lg [ P(T) = good(u)}. 

Given a collection T of types, we write 

u(r) do=j UT~:r U(T). 

DEFINITION 3.2. Let 0 < A  _< 1 be a 'real number, and 
let k > 0 be an integer. A collection T of types is a 
(~, k)-type-cover if IU(T)I > )~m and ]U(T)I _> m / k  for 
each T E T .  

2The  a lgor i thm works as s t a t ed  for a rb i t r a ry  numer ic  grades,  
as well as for b inary  values. 

Let us highlight a few properties of our definition 
of type cover. First, the product  sets of different types 
in a type cover may have arbi t rary  intersection. This is 
in contrast  with the "type separability" assumption [4], 
which requires the product  sets to be nearly disjoint. 
This is quite a severe restriction: for example, if 
preference vectors include a product  tha t  all users like 
(say, motherhood and apple pie), then type separation 
would allow only one vector to be included in a type 
covet'. Second, types in a cover must have a minimum 
number of users, but nothing is required of types not 
in the cover. This in contrast  to the "gap" property 
required by [4], that  stipulates tha t  the number of 
users of each type in the cover is much larger than the 
number of users in each type not in the cover. Finally, 
we note that  the definition of a type implies that  if 
T and T '  are types with different product  sets, then 
U(T) ~ U(T' )  = ¢, i.e., they have disjoint user sets. 
This restriction will be lifted in the next section. 

We now characterize the performance of ..4cntr (k, 3') 
in the context of a (A, k)-type-cover: 

THEOREM 3.1. Let 3, > O. I f  there is a (A,k)-type- 
cover ]br some A > 0 and k > 0, then with probability 
at least 1 - 3 `  the algorithm Acntr(k,3`) generates a 
set of recommendations th, at satisfies Am users with 
recommendation and time complexity O( k (m + n)  log ~). 

P r o o f :  Let T be a (A, k)-type-cover, For a type T c T,  
the users of U(T) will find a good product  in the set 
recommended by Algorithm Acntr if some user of U(T) 
has been chosen to the committee. Each user of U(T) is 
chosen to the committee with probabili ty IU(T)I /m _> 
1/k, since T c T and T is a (A, k)-cover. Hence the 
probabili ty tha t  no user of U(T) has been chosen to the 
cornnfittee is at most 

1 -  = 1 -  _< e -' '~k/~'= T / k .  

Hence, the probabili ty that  the users of some type T E 
T fail to find a good product in the set recommended by 
~A~cntr is at most k(7 /k )  = 3 .̀ The theorem now follows 
from the fact tha t  [U(T)[ > Am. | 

Irttuitively, each user in the type cover has, with 
high probability, a "representative" user fl'om his type 
in the committee,  whose job is to discover the product 
his "constituent" users like; this representative reports 
his findings to the benefit of all others. The reader may 
note that  in some sense, committee members  play a role 
similar to that  of critics in human society. 

Theorem 3.1 bounds the probabili ty tha t  a user 
finds a good product after testing all K = k ln(k/3,) rec- 
ommendations.  It  may be interesting also to understand 
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how ninny products the user should test on average un- 
til it finds that  good product.  We assume that  the order 
in which non-committee users t ry  recommendations is 
a random permutat ion.  

THEOREM 3.2. Let 7 > O. If  there is a (.~, k)-type- 
cover" 7- for some A > 0 and k > 0, then the expected 
individual recommendation complexity for users in T is 
O(k(1 + n ~o.~__k/~))) 

' f i t  / " 

P r o o f :  A random user u is chosen for the committee 
with probabil i ty ~ = O(kl°gm(k/~)), in which case it 
tests all n products, accounting for the second term 
in the bound. Now suppose that  u E U(T) is a 
non-committee member.  In this case u only tests 
products  until it finds a product  it likes, or until 
all K recommendations are exhausted. Consider the i th 
recommendat ion it tests. Since committee members  
are picked at random, and since u picked a random 
recommendat ion as its i th product,  we have tha t  u 
follows the recommendat ion of a random user. Let T~ 
be the type of u. Since Tu E T, the probabili ty 
that  a random user is of type Tu is IU(Tu)[/m > 
1/k. Since the i th recommendation is good for u if 
the i th committee member  is of type T~, we get that  
the probabil i ty tha t  the first good recommendation 
is the i th one is at least ( 1 - l / k )  ~-1 • ( l /k ) .  The 
probabil i ty tha t  u does not find a good recommendation 
after trying all K of them is (1 - 1/k) K. Therefore, the 
expected number ~Pu of products  u tests is bounded by 

E[cpu] < E ~  1 -  + K  1 -  
i = 1  

( < k + K  1 -  

< k +  Ke-]n(k/~) 

= k + k l ~ ( k / ~ )  _ O ( k ) .  ! 
k/7 

A detailed comparison of these results with those 
of [4] appears  in Section 5. 
C r i t i q u e  o f  C o m m i t t e e  A l g o r i t h m s .  The idea of 
committee,  used in Algorithm .Acntr, has some serious 
disadvantages. First, the individual recommendation 
complexity of Acntr is ~(n), since a commit tee  member  
must test  all products  to make a recommendation.  This 
is not merely a formal objection, but ra ther  a symptom 
of the real difficulty in implementing a committee- 
based algorithm (in [4] it was proposed to compensate 
commit tee  members  for their efforts). 

The second point is been seen in a distributed 
implementat ion with malicious users. In this case, 
even choosing a commit tee  is a non-trivial task: how 

A l g o r i t h m  .Adist followed by each user 
r e p e a t  

Flip a coin. 
If the result is "heads," select a product  

uniformly at random and probe it. 
If  the result is "tails," select a user uni- 

formly at random and probe the product  
that  user recommends. 

un t i l  a good product  is found. 
Recommend the good product  and halt. 

Figure 2: The distributed algorithm Adist. 

will membership be determined? If  users decide on 
their own whether they are commit tee  members,  many  
dishonest users might "volunteer" into the commit tee  
and effectively hide the honest members.  One possible 
workaround for this problem is a random beacon [9] tha t  
generates public coin flips. But  even if we had a random 
beacon at our disposal, any committee-based algorithm 
is vulnerable to adaptive Byzantine at tacks that  target  
committee members.  This is a very practical threat:  one 
real-world adaptive Byzantine adversary is the one who 
thwarts  the algorithm by bribing commit tee  members.  

Subsequently, in the following section we present 
a distributed algorithm tha t  does not use a commit tee  
and does not suffer from these problems. 

4 Distr ibuted Algori thm 

This section presents a distributed solution to the rec- 
ommendat ion problem tha t  is resilient to arbitrari ly ma- 
licious behavior from any fraction of the users. This al- 
gori thm shows tha t  it is possible to do away with the 
committee altogether in a solution to the recommenda- 
tion problem. Even more interesting, the correctness 
of the algorithm does not depend on the existence of 
any kind of cover. The analysis of the algori thm's  rec- 
ommendat ion complexity does depend on covers, but it 
uses a significantly more relaxed notion of a cover by 
"special interest groups," and not type covers. 

4.1 A l g o r i t h m .  The algorithm .Adist is very sim- 
ple (see Figure 2): each honest user repeatedly either 
chooses a random product  and probes it, or chooses a 
random user and probes the product  tha t  user recom- 
mends. This is done by sending a message to tha t  user, 
to which the consulted user responds with the identity 
of the best product  he's probed so far (ties broken arbi- 
trarily). When a user finds a good product,  the user is 
said to be satisfied and he stops running the algorithm. 
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4.2 Analysis of  recommendation complexity. 
The basic property of Adist is stated in the following 
theorem, which bounds the total recommendation com- 
plexity of any set of users with a shared good product 
under any asynchronous schedule and any adversary. 

THEOREM 4.1. Let U be a nonempty set of h.onest 
users and P be a nonempty set of products such that 
P C good(u) for every u • U. For every operating 
environment, the expected recommendation complexity 
for users in U in an execution of Algorithm Adist is at 
most 2 ('n/lPI + m in IUI). 

P r o o f :  To prove that  the bound on expected recom- 
mendation complexity holds for every operating envi- 
ronment, let us fix an arbitrary environment £. Let a 
be the random variable whose value is the sequence of 
probes by users in U during an execution of Adist ill the 
context of 8. Let a = a0crL " • ~rlg I where ere is the ran- 
dora variable whose value is the subsequence of probes 
preceded by exactly ~ probes by users in U of products 
in P. In other words, exactly £ users in U have found 
a product in P at the start of ae, and the final probe 
of (re is by the (~ + 1)st user in U finding a product 
in P. Notice that some users in U may be satisfied by 
products outside of P, meaning that  only a subset of 
nsers in U actually probe a product in P, in which case 
solne suffix ffj(Tj+l •. • ~r[u] of a may actually be empty. 
Since users halt once they find a product in P, we can 
bound the recommendation complexity by counting the 
number of probes by users in U to products not in P. 

Clearly count(a) = ~ l  o co,unt(ae) is an upper bound 
on tile total number of products tested by users in U as 
they search for a good product. 

Consider the cost of a0. With probability 1/2 the 
algorithm chooses a random product to sample. Since P 
is nonempty and there are n products, each probe in a0 
probes a product in P with probability at least [PI/2n, 
and hence E [count(~7o)] _< 2n/]P]. Now consider the 
cost of ae for ~ > 0. With probability 1/2 the algorithm 
chooses a user and samples its recommendation. Since 
exactly g users in U have found a product in P when ae 
begins, each probe in ae finds a product in P with 
probability at least g/2m, so the expected number of 
probes in ae is 2m/g. Thus, 

lel 

E [co'unt(cr)] = E [eount(cro)] + EE[c°unt(~re)]  
£=1 

2n ~ 2'm 

£=1 

) = 2 + m l n l d l  . I 

Intuitively, the analysis divides the execution into 
two stages: ill the first stage, the users search for 
a good object until one of them finds it due to the 
"random product" probes; in the second stage, the 
identity of that  product is spread among the users by 
the epidemic-style "random recommendation" probes. 
It may be interesting to note that  in a "steady state," 
when many users have halted, tile Mgorithm gives a 
concrete distributed implementation of best-seller lists 
by randomly sampling the users. 

Theorem 4.1 holds unconditionally, but gives a good 
bound oldy for a set of users with a common interest. 
A good bound for most users can be obtained under 
an assumption similar to that  made in Theorem 3.2, 
namely, the existence of (A,k)-type-cover. However, 
Theorem 4.1 indicates that  we can use a much weaker 
notion, referred to as a special interest g,vup or SIG. 
Intuitively, while users of the same type must have 
exactly the same preferences, users in the same SIG 
need only have a non-empty intersection of preferences. 
Formally, we have tile following definition. 

DEFINITION 4.1. A special interest group (SIG) S is a 
set of honest users U(S) and a nonempty set of prod- 
ucts P(S)  satisfying the condition that every product 
in P(S)  is good for every user in U(S), namely, 

u ( s )  c {~ • u I P ( s )  c good(u)}. 

Given a collection S of special interest groups we write 

v(s) aej Uses V(S). 

A special interest group S, therefore, is a set of 
users U(S) that  would be satisfied by any product 
in P(S)  (and possibly by other products as well). The 
set of products P(S)  represents a common or special 
interest of the users in U(S). 

Using the concept of SIGs, we generalize Theo- 
rem 4.1 as follows. 

COROLLARY 4.1. Let S = {S1 , . . . , S e }  be any collec- 
tion of SIGs, and denote 

~ ( 8 )  = max{IU(&)l , . . . , IU(Se)]} , 

'Ft(S) = In in{IP(S1) l , . . . , IP(&) l}  - 

The expected recommendation complexity for the users 
in U(S) is at most 

2 ~ ( ' ~ + m l n ' , h ( $ ) )  < 2 ~ ( n + m l n m ) .  

Now we can compare .Adist to .Acntr: suppose, in 
the spirit of Theorem 3.2, that  there exists a small 
collection of SIGs that  cover most users (i.e., g = O(1) in 
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Corollary 4.1, and Iu(s)t > 1-A for asmall  A). Then the 
m 

expected total recommendation complexity over most 
users is just O(n + m In m) by Corollary 4.1, as opposed 
to O(n + m) in Theorem 3.2. However, fl[dist improves 
on  A c n t r  in that it tolerates malicious users, and in that 
SIGs are used, and only to bound performance (rather 
than requiring types, and to guarantee correctness). 

4.3 I n d i v i d u a l  r e c o m m e n d a t i o n  c o m p l e x i t y  in 
t h e  s y n c h r o n o u s  m o d e l .  Corollary 4.1 gives the 
expected recommendation complexity for the algo- 
rithm Adist, but what can we say about the individ- 
ual recommendation complexity? Clearly the number 
of products a user must probe to find a good one de- 
pends how many other users from the same SIG are 
probing. If the schedule is such that  a user is running 
alone, it will have to carry out the entire search on its 
own. If a user is running concurrently with many oth- 
ers from its SIG, it can expect the search to be dis- 
tributed over all of these users, reducing the number 
of products it has to probe itself. To get a handle on 
individual costs, we study individual recommendation 
complexity in a synchronous model where an execution 
proceeds in a sequence of rounds. In each round, users 
first send messages to other users, then get replies, and 
finally probe a product. This model is different from the 
one obtained by restricting the asynchronous nrodel to 
round robin schedules: round robin schedules consist of 
a sequence of atomic send-receive-probe steps, whereas 
the synchronous rounds entail concurrent actions, and 
therefore require a little more effort to analyze. 

Our main result for this model is stated below. 

T H E O R E M  4.2. Let S be any special interest g~vup. 
If [U(S)[ > ft( logm),  then with probability at least 
1 -.m -n(U, at least half of the users in U(S) have found 

)) agoodpwductbytimeO\lu(S)l .  P ( ~  + m  . 

P r o o f :  Define a s  d~_=f Iu(-s)l~ and /38 d=d Ip~s)I, i.e., 
c~s and /38 are the fractions of users and products, 
respectively. Fix a constant c >_ 2, and assume that  
c~s > 32clogm/m. Denote by p(t) the number of 
recommendations by users in U(S) for products in P(S) 
after t rounds. Any execution of the algorithm can be 

rloo' _JL~_L~I.q phases, defined as viewed as having q = ~ ~, 4 c  log m / 

follows. Let f l  = 1 a n d f k  = 2kclogmfor2 < k < q-1.  

1. For 1 _< k < q - 1, Phase i ends as soon as either 
half the users in U(S) are satisfied or p(t) > fk. 

2. Phase q ends when at least half the users in U(S) 
are satisfied. 

(Note that  the two events defining the end of a phase are 
not necessarily ordered, since generally, users in U(S) 

can be satisfied by products other than those in P(S) 
and similarly, products in P(S) can be recommended 
by users other than those in U(S).) 

For 1 < k < q, let tk be a random variable counting 
P. 1. m ] the number of rounds of Phase k. Let rl  = |4cER(ggKg / , 

r2 = [Si~5_D_az~] rk = l ' 6 /  for 3 < k < q - 1  arid 
| ~ / '  . .g7  - - 

[ 16(~+~)log,,,1 rq : / ~ /" Let £k denote the event that 

tk > rk. 

LEMMA 4.1. P [£k] --< m -c  for every 1 < k < q. 

P r o o f :  We prove the lemma for each phase separately. 

P h a s e  1: In every round of Phase 1, each unsatisfied 
user probes a product in P(S) with probability at least 

1 IP(S)l _ Zs By definition of Phase 1, at least half of 
2 n 2 " 

the users in U(S) are unsatisfied throughout the phase. 
Hence P [£l] is bounded from above by the probability 
that none of these users probes a product in P(S) in 
any of the first rl rounds, i.e., 

( _~)lu(s)lrl/2 
p [&] _< 1 - 

< exp(-[u(s)[flsrl/4) 

: exp( Iu(s)l~s4 Iu(s)l~s4cm"~ ) =m_~, 

implying the lemma for Phase 1. 

P h a s e  2: If Phase 1 ends when half the users in U(S) 
are satisfied then the ends of Phase 1 and 2 coincide and 
there is nothing to prove. So suppose Phase 2 begins 
with at least one recommendation for a product in P(S), 
but fewer than half the users in U(S) are satisfied. In 
this case, each unsatisfied user u samples a product 
of P(S) with probability at least 1 ~7~ in every round 
of the phase. Hence u finds a product of P(S) in the 
first rk rounds of Phase 2 with probability at least 1 - p 
for p = (1 - 1 ' i t 2  ~ j  . Note that  

d 4 c  hJ~. rn 

p < 1 -  

32clog m'~ 16clogm 
_< exp ]U(S)] ) <- I [U(S)i , 

where the last inequality relies on the fact that  
exp ( -x )  < l -x~2 for 0 < x < 1 and c~s. > 32c logm/m.  
By definition of the phase, at least half of the users in 
U(S) are unsatisfied throughout the phase. Let Hk de- 
note the random variable counting the number of users 
of U(S) that  find a product of P(S) during the first rk 
rounds of Phase k. It follows that  the expected value 
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of H2 satisfies 

E[H2] > IV(S)[ (1-p)  
- 2 

> IU(S)l 16clogm 

- 2 IU(S)l 

By Chernoff's bound, 

- -  8 c  l o g  m . 

Pig2] < P [ H 2 < 4 c l o g m ]  

< exp( ~ x 8 c l o g m ) -  - 4  ="'~-~' 

implying the lemma for Phase 2. 

P h a s e k f o r 3 < k < q - l :  Again, if Phase k - l  ends 
when half the users in U(S) are satisfied then there is 
nothing to prove, so suppose Phase k begins with at 
least fk-1 recommendation for a product in P(S), but 
fewer than half the users in U(S) are satisfied. 

Assuming Phase k begins with at least fk-1 recom- 
mendations for products in P(S), each unsatisfied user u 

samples a product of P(S) with probability at least A.-a 2*n 
in every round, hence u finds a product of P(S) in the 
first rk rounds of Phase k with probability at least 1 - p 

f o r p =  1 -  2m ] . Note that 

p < 1 - - ~ - ~ - ]  < exp ~ U ~ ]  -< 1 IU(S) I '  

where the last inequality relies on the fact that  
exp( -x )  < 1 - x/2 for 0 < x < 1 and fk-1 <_ IU(S)]/8 
for k < q - 1. By definition of the phase, there are at 
least I U(S)I/2 unsatisfied users throughout it. It follows 
that the expected value of Hk satisfies 

E[Hk] > I U ( S ) [ ( 1 - p ) >  I u ( s ) L  4fk-1 
- -  2 - -  2 " l U ( S ) l  - -  2fk-1 .  

By the Chernoff bound, 

( ~  1 " 2fk-1) P [Hk < fk-1] <__ exp - • 

) exp - g . 8 c l o g m  = m -  ~. 

As Phase k begins with at least f k - ;  recommendations 
for products in P(S), we have that  if Hk > fk-1 
then after rk rounds of Phase k, the number of such 
recommendations is at least f k - i  + Hk k 2fk-x = fk, 
implying -~$k. Hence P [gk] < m-% 

P h a s e  q: Again, if Phase q - 1 ends when half 
the users in U(S) are satisfied then we are done, so 
consider the case when Phase q begins with at least 

fq-a recommendation for a product in P(S), but fewer 
than half the users in U(S) are satisfied. 

Assuming Phase q begins with at least 

f~_, = 2q-~clogm > c log .~ .  IU(S)I - I U ( S ) l  
- 8c log m 8 

recommendations for products in P(S), each unsatisfied 
user u samples a product of P(S) with probability at 

least ~ in every round, hence u fails to find a product 8m 
of P(S) in the first rq rounds of Phase q with probability 
at most 

8m ] 
< e x p (  f q ~ : r e  
- \ 8rn J 

(,U(S), . 16(c+1) logm) 
< exp s as 
- 2m 

= exp ( - ( c+  1)logm) = m -c - t  . 

Thus the probability that not all users of U(S) will be 
satisfied after rq rounds is at most 'rn-% | 

The theorem now follows by combining the claims of 
the lemma for the separate phases and concluding that  
the probability that any of the events $i has occurred, 
for 1 < i < q + 1, is at most (q + 1)m -c _< m 1-~. Hence 
with probability at least 1 - m 1-c, the total number of 
rounds until at least half the users of U(S) were satisfied 
was bounded by 

q F lnm ] [64clogm] 
< }4ctu(s)t s / + ,  , -  

k = l  i as / 

1)+ + 
( ( '  = o logm Iu(s) l ,~s + 

as q = O(log m). | 

Note that  the theorem does not guarantee that  
all users in the SIG will find a good product quickly: 
this is because some of the users may be satisfied with 
products not in P(S). The following lemma says that  
if sufficiently many users of U(S) actually recommend 
products from P(S), then all users in U(S) will be done 
quickly. 

LEMMA 4.2. Let S be any special interest group, and 
suppose that at some time t, there are at least IU(S)I/2 
recommendations for products in P(S). Then with 
probability at least 1 - .m -f~(1), all users in U(S) will 
find a good product by time t + ~ Iu(s)l J" 

P r o o f :  Let c > 4. We show that with probability at 
least 1 - m 1-c/4, all users in U(S) will find a good 
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product by time t + ch,___m Consider any user u E U(S)  
Oz2; * 

that  has not found a good product by time t. Let 
Pu denote the probability that  u does not find a good 
product within ct, ra rounds after time t. In each round 
after time t, u follows the recommendation of a random 
user with probability 1/2. By assumption, tiffs user 
recommends a product fl'om P ( S )  with probability at 

least Iu.(s)[/~ = as~2. Hence in each round after time t, 77/, 
u will t ry a product from P(S )  with probability at least 
_12 " -~2 = ~ "  It follows that  

( - ~ ) ( ~ l " ' ~ ) / ~ _ e - ( ~ ' n ' ) / 4  . p~ < 1 - < = m -c/4 

The result follows, since the probability that not all 
c l n m  i s  a t  s n o s t  users in U(S)  have finislmd by time t + 

pu]U(S)I < pure. | 

Theorem 4.2 and Lemma 4.2 yield the following 
implication for the special case of types. 

COROLLARY 4.2. Let T be any type. I f  IU(T)] > 
f~(logm), then with probability at least 1 - m -f~(1), 
all users in U(T)  have found a good product by time 

0[-~-~..~- '~ m ) ) .  \lu(s)l " ( [ P ~  + 

P r o o f :  By Theorem 4.2, with probability at least 1 - 
m -~(1) there exists some time tl = O(log m(T~T~S~: + 

~7)) by wlfich at least half of the users of U(T)  have 
found a good product. Since T is a type, the good 
products all these users found are in P(T) .  The result 
hence follows from Lemma 4.2. | 

We note that one can use either Theorem 4.2 or 
Corollary 4.2 to bound the individual recommendation 
complexity of users. It is clear that  we can always 
partition the set /L/ of users into equivalence classes 
where two users u and v are in the same equivalence 
class iff good(u) = good(v). Each equivalence class 
naturally gives rise to a type T where U(T)  is the set 
of users in the class and P ( T )  is the set of products 
they consider good. In this sense, we can always find 
a type T containing u, and use T and Corollary 4.2 to 
bound the recommendation complexity for u. However, 
IU(T)] might be small. If there is a large SIG containing 
u, then Theorem 4.2 allows us to get a tighter bound on 
the individual recommendation complexity for at least 
half of the members of that  SIG. 

5 D i s c u s s i o n  o f  resu l t s  

In this section we compare the models used by the MR 
algorithm in [4] and our centralized model as described 
in Section 2. Since our model is a streamlined version 
of the MR model, some (straightforward) analysis is 
required to show that up to constant factors, our model 
is no weaker than the MR model. 

5.1 U s e r  p r e f e r ences .  The MR model uses real 
values to model user preferences for products, whereas 
we use binary values. We argue that  using binary values 
is simpler and does not restrict generality. 

Specifically, the MR model assumes that  there is 
a preference vector A~ for each user u, a vector of 
nonnegative real values such that  the pth entry Au,p in 
the vector is the preference value of product p in the eyes 
of u. For each user u, the model defines a threshold Ou 
in terms of A~, and defines a product p to be good for u 
if Au,p > 0u. The model defines a recommendation to 
be a small set of products, and a recommendation is 
good for u if it contains a product that  is good for u. 

In contrast, we use binary preference values to 
products, saying that  u has preference 1 for p if p c 
good(u) and 0 otherwise. This is justified simply 
because our algorithms work for arbitrary numeric 
values just as well. (As an aside, it appears that binary 
data is often seems easier to collect, say by interpreting 
a clicking on a product as endorsing it.) It may be 
interesting to consider translating the MR model to the 
binary model by replacing real preferences with binary 
preferences by defining good(u) to be the products with 
real preferences above 0u. This approach gives rise to 
the more important question: can a user u decide on- 
line if p E good(u)? The implication of the existence of 
an on-line test (say, if the threshold value 0u is known 
to u), is that  users can stop as soon as they find a good 
product. If no on-line test is available, then the best 
one can hope for from an algorithm is to prove that  if 
the users test enough of the recommendations made by 
the algorithm, they will be satisfied. Our distributed 
algorithm is written assuming that  an on-line test is 
available (thus allowing early stopping), but can easily 
be adapted to the case where no such test is available. 

5.2 C o v e r s  a n d  ef fec t iveness .  The analysis of 
the MR algorithm uses a concept called (A,k)- 
effectiveness. A set of users is said to be (A, k)-effective 
for some real 0 < )~ < 1 and integer k > 0 if there 
exists a subset of at least Am users that  belong to at 
most k types. In the analysis of Algorithm .Acntr, we 
use a dual concept of (A, k)-type-covers. The following 
lemma shows that the concepts of user effectiveness and 
covers are equivalent up to constant factors. 

LEMMA 5.1. Let ld be a set of users and good(u) be the 
good products for a each user u E ld. 

(1) I f  there exists a (A, k)-type-cover for Lt, then bt 
is (M, k')-effective for A' = A and k' = [Ak]. 

(2) I f ld is (A, k)-effective, then for any 0 < e _< 1, Lt 
has a (M, k')-type-cover for A' = (1 - e)A and k' = 
kl(Ae). 
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P r o o f i  S u p p o s e / / / h a s  a (A, k)-type-cover T ' .  To show 
that /A is (A, [Ak])-effective, consider any subset 7- of  T '  
such tha t  IT] = [Ak]. I t  is sufficient to show tha t  
IU(T)I > Am. This is t rue because by definition, 
IU(T)I k ~ for each T E 7-', and U(T) N U(T')  = 
tbr any two distinct T , T '  E 7-'. Therefore IU(7-)I >_ 
[~k]  '~ > .Xm. 

T -  
Conversely, suppose bt is (A, k)-effective, and fix 

0 < ~ < 1. Let  7- = {T1 . . . .  , Tk} be the type  collection 
indicated by the (X, k)-effectiveness assmnption.  Then  
IU(7-)I > Am. Define < = {T 6 7- I }U(T)I _> cAm/k}.  
We claim tha t  7~ is a ((1 - e) l ,  k/(A~))-type-cover.  By  
definition, each type  in ~ has at least Aem/k  users, 
hence the second cover requirenrent follows. To see tha t  
also I g ( < ) l  is as required, define "/~ = 7- \ 7~. By 
definition, IU(T)I < e)~'m/k for each T c "/~. This yields 
the required size bound,  since 

earn 
IU(q~)I = )U(7-\T~')) > Am-k k - (l-c)Am. | 

Cast ing the results of Theorems 3.1 and 3.2 in the 
terminology of  [4] and applying Lemma 5.1, we get the 
following: 

COROLLARY 5.1. If the users are (A',k')-effective for 
some A' > 0 and k' > O, then for all ~ > 0 Theorems 3. I 
and 3.2 hold with A = (1 - e)A' and k = k ' / (A'e) .  

5 .3 T y p e  d e v i a t i o n .  An impor tan t  aspect of 
the MR model tha t  we abs t rac t  is type  deviation. 
Specifically, in the MR model, it is assumed tha t  the 
preference vector of each user is a r andom variable, 
obtained by adding to the user 's type  vector  an "er- 
ror vector." The  error vector is assumed to consist 
of  n independent  0-mean r andom variables with vari- 

a n c e a  2 =  2 for some s m a l l 0 < e < l .  
m,-t-n 

Assuming such a small magni tude  of  variance of  
the errors, it is easy to justify our abstract ion:  This 
assumpt ion implies t ha t  for each user and any p > 0, 
with probabil i ty 1 -  p, all preferences are at most  

5 d~_f ~/x/P away from the type  vector. This is because 
Chebychev 's  Inequal i ty  says tha t  the probabil i ty tha t  
a user's preference for any specific p roduc t  differs from 
the canonical  preference by more than  5 is less than  

cr 2 e 2 e2 e2p p 

5 2 (m + n)~  2 n 5  2 n e  2 n 

It  follows tha t  the probabil i ty tha t  all the preferences 
of a user differ from the type  vector by at most 5 is at 
least (1 - ~)n > 1 - p. Hence, for any given p > 0 we 
can define a goodness predicate using a threshold 0 so 
tha t  all but  a fraction p of the users have preferences 
tha t  agree with all o ther  users of their type.  

As an aside, we note t ha t  SIGs may  be viewed as 
another  (deterministic) abs t rac t ion of  type  deviation,  
t ha t  allows for much s t ronger  noise models. We defer 
discussion of this aspect  to the full paper.  
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