
Improved Recommendation Systems*
E X T E N D E D A B S T R A C T

Baruch Awerbuch t Boaz Pa t t -Shamir * David Peleg § Mark Tutt le ¶

A b s t r a c t

We consider a model of competi t ive recommendation
systems proposed by Drineas et al. [4]. In recommen-
dation systems (e.g., for books or movies), the system
tracks which product each user chose in the past, and
tries to deduce which other products an asking user is
likely to be satisfied with. Obviously, recommendation
systems can be effective only for users who share pref-
erences with many other users. Such users are said to
belong to a "dominant type." Current approaches to
on-line recommendat ion systems involve using Singular
Value Decomposition (SVD), which is computat ionally
intensive and, more important , often applicable only un-
der additional strong conditions. Specifically, correct-
ness is guaranteed in [4] only if users of different domi-
nant types essentially do not share a product they like
(" type separabili ty"), and only if the number of users
in non-dominant types is significantly smaller than the
number of users in dominant types ("gap assumption").
The complexity of tha t algorithm is O(mn) , where m
and n denote the number of users and products, re-
spectively. In this paper, we show tha t in fact, very
simple combinatorial algorithms can make good recom-
mendations without using SVD. Our algorithms'require
neither the type separability nor the gap assmnption,
they are natural ly amenable to distibuted computat ion,
and their complexity is lower. In particular, the paper
presents an O(m + n) t ime centralized algorithm and
a distributed algorithm tha t can be implemented in a
peer-to-peer model even in the presence of adaptively
colluding malicious players, with only logarithmic over-
head.

"---~]~'earch conducted at Hewlett-Packard Cambridge Research
Laboratory, One Cambridge Center, Cambridge, MA 02142.

tComputer Science Department, Johns Hopkins Univer-
sity, 3400 N. Charles St., Baltimore, MD 21218. Email:
baruch~acm, org.

tDept, of Electrical Engineering, Tel Aviv University, Tel Aviv
69978, Israel. Emaih boazOeng, tau. ac. i l .

§Dept. of Computer Science and Applied Mathematics, The
Weizmann Institute of Science, Rehovot 76100, Israel. Email:
david, peleg@weizmann, ac. il.

¶Cambridge Research Laboratory, HP Labs, One Cambridge
Center, Cambridge, MA 02142. Emaih mark.tuttleOhp.com.

1 I n t r o d u c t i o n

We consider an abstract ion of the recommendation
problem proposed by [4, 6], that can be described
informally as follows. There are m user's and n products.
Given a product, a user can tell whether he considers
it to be good. A recomlnendation algorithm tracks
the choices of all users; in a basic step, the algorithm
recommeu, ls a product to a user and asks what the user
thought about the product. The task of the algorithm
is to recommend a good product to most users, and its
performance measure is the number of recommendat ions
made to a user until a good product is recommended, as
well as the number of users that are eventually satisfied.
We believe tha t most readers have been exposed to
commercial recommendat ion systems in one form or
another (say, book recommendations in Amazon).

Obviously, recommendat ion systems (a.k.a. collab-
orative filtering systems) may only be useful to a user
who shares preferences with others: a user with eso-
teric preferences cannot rely on others to help him find
a product he likes. In [4], this proper ty is captured as
follows. At the outset, each user is assumed to have a
grade for each product, so tha t each user is represented
by his vector of grades. (The grades are revealed in an
on-line fashion, but are assumed to exist always.) To
model popular preferences, it is assumed tha t there ex-
ists a set of k "canonical" vectors (where k is a small
constant), such tha t most user vectors are the result of
adding random noise to one of the canonical vectors.
Such a user is said to belong to a dominant type. The
assumption tha t most users belong to a small number
of dominant types appears to be a reasonable simplifi-
cation; the algorithm aims at satisfying these users.

The recommendat ion system proposed in [4] is
a centralized algorithm based on matrix reconstruc-
tion [2, 12]. The algorithm of [4], denoted MR hence-
forth, can be roughly described as follows. MR first
chooses a small set of users and asks them to t ry all
products and grade them. Based on these responses,
each remaining user is asked to t ry a carefully chosen
small set of products; the lat ter responses are used to
associate users with types, which in turn are used to rec-
ommend products to users. It is shown that MR guaran-

1174

tees (with high probability) tha t each user fl'om a don>
inant type gets a good recommendation. The heart of
MR is a low-rank approximation of the full user-product
grade matr ix (the low rank is k, the number of domi-
nant types). This approximation is based on Singular
Value Decomposition (SVD). The algorithm works only
when a few severe conditions are met. First is the type
separability assumption, which requires that the canon-
ical vectors be nearly orthogonal; this means that two
users from different dominant types essentially do not
share any product they both like. Second is the gap
assumption, which says that any non-dominant type is
far less popular than any dominant type. To complicate
things further, MR must know the number of dominant
types in order to produce correct results. Lastly, the
computational complexity of the algorithm is O(m'n).

In this paper we show, surprisingly, tha t the al-
gebraic approach can be abandoned for this particu-
lar problem without any loss in the quality of the re-
suits, and while dramatically simplifying the algorithms.
Moreover, both type separability and gap assumptions
turn out to be unnecessary. Most important , we show
tha t a distributed peer-to-peer solution is possible, even
in the presence of a very powerful adversary.

Intuitively, the basic idea behind our algorithms is
the use of "best-seller lists" via random sampling. Our
distributed algorithm is based on techniques developed
in the context of auction systems like eBay [1].

We present the following results. First, we give a
centralized algorithm tha t runs in t ime O(m + n) as-
suming that most users fall within one of k = O(1) large
types (but neither type separability nor the existence of
a gap are assumed). We note tha t f t(n + m) is an ob-
vious lower bound on the number of recommendations
made by aW recommendation algorithm even when all
users are identical (i.e., k = 1): if only one of the prod-
ucts is good, then f~(r~) products must be recommended
by the algorithm until that good product is discovered;
and in addition, the algorithm must recommend to each
of the rn users at least one good product.

Our main result is a distributed solution to the rec-
ommendation problem. We show that under any asyn-
chronous schedule, the total number of recommenda-
tions required to satisfy any set of users with shared
interest is O('n + m logm) with high probability, com-
ing within a logarithmic factor of the optimal. Our
Mgorithm can tolerate malicious users in the form of
an omniscient, adaptive, Byzantine adversary. (This is
an important consideration for distributed peer-to-peer
systems.) Another important feature of the algorithm is
that it does not require users to be rigidly classified into
types: users may have any preference vector whatsoever
without changing the algorithm; only the performance

will be affected, in the sense tha t users with esoteric
preferences will have to work more.

We note that our algorithms imply that type sepa-
ration enables full matr ix reconstruction, but it is not
required for competit ive recommendations.
R e l a t e d w o r k . Most prior research on recommenda-
tion systems focused on a centralized, off-line version
of the problem, where the algorithm is presented with
a lot of historical preference data, and the task is to
generate a single recommendation that maximizes the
utility to the user. This is usually done by heuristically
identifying clusters of users [10] (or products [11]) in the
da ta set, and using past grades by users in a cluster to
predict future grades by other users in the same cluster.
SVD was shown also to be effective for the off-line prob-
lem [12]. Some of these systems enjoy industrial success,
but they are known to perform poorly when prior da ta
is less than plentiflfi [13], and they are extremely vul-
nerable even to mild at tacks [7, 8]. Canny [3] gives a
distributed secure and private SVD computat ion for the
offqine version of the problem.

Theoretical studies of recommendation systems
usually take the latent variable model approach: a
stochastic process is assumed to generate noisy obser-
vations, and the goal of an algorithm is to approxi-
mate some unknown parameters of the model. Kumar
et al. [6] s tudy the off-line problem for a model where
preferences are identified with past choices (purchases).
In this model there are clusters of products. Each user
has a probability distribution over clusters; a user first
chooses a cluster by his distribution, and then chooses
a product uniformly at random from that cluster. The
goal is to recommended a product from the user's most
preferred cluster. Kleinberg and Sandler [5] generalized
this model to the case where the choice within a cluster
is governed by an arbi trary probability distribution, and
also consider the mixture model, in which each cluster
is a probability distribution over all products. Azar et
al. [2] consider a model where there exists an unknown
user-product preference matr ix which can be approxi-
mated by a low-rank matrix. The system observes this
matr ix only after its entries were subjected to random
additive noise and then to random omissions. They use
SVD to reconstruct the original preferences.

In this work we use the on-line model of recommen-
dation systems, as proposed in [4], which is discussed
above, and in further detail in Section 5. We note that
measures and techniques used for off-line Mgorithms do
not readily apply to the on-line scenario, since the off-
line case ignores the crucial interaction between the al-
gori thm and the user; this feedback necessarily skews
the statistical properties of the observed data.
P a p e r o r g a n i z a t i o n . We define the recommendation

1175

problem and our model in Section 2. In Sections 3 and 4
we give our centralized and distributed algorithms, re-
spectively. In Section 5 we present a detailed discussion
of out' model in the context of previous models.

2 F o r m a l M o d e l

T h e r e c o m m e n d a t i o n p r o b l e m . Let us begin by
defining the recommendation problem. Assmne the
existence of a se t /b /o f users and a set P of products.
Denote I/L/] = m and I~I = n. Each user has a numeric
grade for each product. In most of this paper, we
will assume for the sake of simplicity that the grades
are binary, i.e., each user views some products as good
and the rest as bad (more on that in Section 5.1).
We use good(u) to denote a function mapping each
user u E L/ to the set of products u views as good.

A recommendation algo~ithm has a single primitive
operation, in which it atomically outputs a product
name to a user ("making a recommendation"), asks
the user for his rating of that product (good or bad),
and gets the user's response as input. When we say "u
probes p" we mean that the algorithm recommends the
product p to u and thus learns whether p E good(u). We
define the set of products recommended to a user to be
the algorithm's recommendation to that user. We want
algorithms that recommend a small set of products to
each user, and so that, with high probability, a large
fraction A of the users will find a good product in the
set recommended to them.

The performance of an algorithm for the recommen-
dation problem is evaluated in two ways. The tradi-
tional time complexity measures the worst-case number
of RAM-model steps taken until the algorithm termi-
nates. In addition, we measure the recommendation
complexity, which is the total number of times users
test recommended products. We further define the in-
dividual recommendation complexity, which is the worst-
case number of products a single user tests. The rec-
ommendation complexity is obviously a lower bound on
the time complexity, and our algorithms have essentially
equal recommendation and time complexities.
T h e d i s t r i b u t e d m o d e l . We now turn to our model
of a distributed system. Each user maintains a log of
his probe results. An execution of the system consists
of a sequence of user steps. In each atomic step, a user
may send messages to other users asking them about
their probe histories, get results back, and optionally
probe a product (and keep the result in his local history
record). 1 In contrast to the centralized model, where

1We remark that in our distributed algorithm, only a single
user is consulted at a step, and a valid response consists of at most
one product, so communication complexity is kept at minimum.

tile algorithm can choose which user takes the next step,
in the distributed model we assume that the order of
user probes is under the control of an external schedule;
the role of a distributed algorithm is limited to directing
the user, as to which user to consult with and what
product to probe during a step, when the user's turn
comes up according to the schedule.

We assume that some users are honest and some
are dishonest. Honest users are required to follow the
protocol, including, in particular, answering questions
truthfully. Dishonest users are allowed to behave in
an arbitrary (Byzantine) fashion, including giving false
reports on their probes and colluding.

Formally, an execution of a recommendation algo-
rithm is uniquely determined by the algorithm, the se-
quence of coins flips, and by three external entities:

1. The user schedule that determines the order in
which users take steps.

2. The dishonest users and the good(.) function.
3. The adversary that determines the behavior of the

dishonest users.
The adversary we consider is the extremely powerful

adaptive Byzantine adversary. Formally, an adversary
is a function that takes the set of dishonest users, the
good(.) function, the schedule and a random binary
sequence, and maps them to a sequence of actions for
the dishonest users, telling them exactly what to do
in each step. The random binary sequence represents
the entire sequence of coin flip outcomes during the
execution, including even future coin flips. Note that
with this infornmtion, the adversary can reconstruct the
entire state of the system at any point in time, and use
any of this information to choose the next move for each
dishonest user.

An operating enviwnment consists of a user sched-
ule, a set of dishonest users, a good(.) function, and
an adversary. The purpose of the operating environ-
ment is to factor out all of the nondeterministic choices
made during an execution, leaving only the probabilistic
choices to consider. When we deal with probabilities or
compute expected values, we fix an operating environ-
ment and consider the distribution of executions with
this operating enviromnent induced by the coin flips.
We note that the user schedule may schedule steps by a
user long after the user has found a good product and
halted, in which case the user just skips its step.

Each execution of the system yields a probe sequence
consisting of the sequence of products probed during
the execution. When we compute the recommendation
complexity of a probe sequence, we count only the
number of probes by the honest users, and ignore the
probes by the dishonest users. Our goal is to minimize
the recommendation complexity for the honest users.

1176

A l g o r i t h m .Acntr (k, if)
Let K = k In(k/@.
Select K users a random. Call these users

the committee.
Let each committee member u probe all n

products, attd let p~ be the product u views
as best (break ties arbitrarily).

Output {p l , . . . , p / , ' } as the set of recom-
mended products.

Figure 1: The centralized algorithm Acntr(k,3,) for
integer k > 0 and error 3, > O,

3 C e n t r a l i z e d a l g o r i t h m

This section presents a centralized solution to the rec-
ommendat ion problem. The algorithm is a simplifica-
tion of the algorithm in [4], but it does not make the
"gap" and "type separability" assumptions (see below).
In this section we assume that all users are honest; dis-
honest users are considered in the next section.

Figure 1 gives the centralized algorithm tha t takes
as parameters an integer k >_ 0 and a real number
0 < 3' <- 1 and outputs recommendations for each user.
The algorithm first selects a random sample of k In(k/7)
users called the "committee," and recommends all n
products to each committee member. Each committee
member chooses the product he liked best, and these
k ln(k/T) are recommended to all remaining users3

To analyze the algorithm we assume that users
can be parti t ioned into equivalence classes called types,
where each equivalence class represents a set of users
with similar preferences. The success of the algorithm
depends on the abundance of large types. Formally, we
have the following definitions.

DEFiNiTiON 3.1. A type T is a set of users U(T) and a
nonempty set of products P(T) satisfying the condition
that the set of 9ood products for a user in U(T) is
exactly P(T) , namely,

U(T) C {u E lg [P(T) = good(u)}.

Given a collection T of types, we write

u(r) do=j UT~:r U(T).

DEFINITION 3.2. Let 0 < A _< 1 be a 'real number, and
let k > 0 be an integer. A collection T of types is a
(~, k)-type-cover if IU(T)I >)~m and]U(T)I _> m / k for
each T E T .

2The a lgor i thm works as s t a t ed for a rb i t r a ry numer ic grades,
as well as for b inary values.

Let us highlight a few properties of our definition
of type cover. First, the product sets of different types
in a type cover may have arbi t rary intersection. This is
in contrast with the "type separability" assumption [4],
which requires the product sets to be nearly disjoint.
This is quite a severe restriction: for example, if
preference vectors include a product tha t all users like
(say, motherhood and apple pie), then type separation
would allow only one vector to be included in a type
covet'. Second, types in a cover must have a minimum
number of users, but nothing is required of types not
in the cover. This in contrast to the "gap" property
required by [4], that stipulates tha t the number of
users of each type in the cover is much larger than the
number of users in each type not in the cover. Finally,
we note that the definition of a type implies that if
T and T ' are types with different product sets, then
U(T) ~ U(T') = ¢, i.e., they have disjoint user sets.
This restriction will be lifted in the next section.

We now characterize the performance of ..4cntr (k, 3')
in the context of a (A, k)-type-cover:

THEOREM 3.1. Let 3, > O. I f there is a (A,k)-type-
cover]br some A > 0 and k > 0, then with probability
at least 1 - 3 ` the algorithm Acntr(k,3`) generates a
set of recommendations th, at satisfies Am users with
recommendation and time complexity O(k (m + n) log ~).

P r o o f : Let T be a (A, k)-type-cover, For a type T c T,
the users of U(T) will find a good product in the set
recommended by Algorithm Acntr if some user of U(T)
has been chosen to the committee. Each user of U(T) is
chosen to the committee with probabili ty IU(T)I /m _>
1/k, since T c T and T is a (A, k)-cover. Hence the
probabili ty tha t no user of U(T) has been chosen to the
cornnfittee is at most

1 - = 1 - _< e -' '~k/~'= T / k .

Hence, the probabili ty that the users of some type T E
T fail to find a good product in the set recommended by
~A~cntr is at most k(7 /k) = 3 .̀ The theorem now follows
from the fact tha t [U(T)[> Am. |

Irttuitively, each user in the type cover has, with
high probability, a "representative" user fl'om his type
in the committee, whose job is to discover the product
his "constituent" users like; this representative reports
his findings to the benefit of all others. The reader may
note that in some sense, committee members play a role
similar to that of critics in human society.

Theorem 3.1 bounds the probabili ty tha t a user
finds a good product after testing all K = k ln(k/3,) rec-
ommendations. It may be interesting also to understand

1177

how ninny products the user should test on average un-
til it finds that good product. We assume that the order
in which non-committee users t ry recommendations is
a random permutat ion.

THEOREM 3.2. Let 7 > O. If there is a (.~, k)-type-
cover" 7- for some A > 0 and k > 0, then the expected
individual recommendation complexity for users in T is
O(k(1 + n ~o.~__k/~)))

' f i t / "

P r o o f : A random user u is chosen for the committee
with probabil i ty ~ = O(kl°gm(k/~)), in which case it
tests all n products, accounting for the second term
in the bound. Now suppose that u E U(T) is a
non-committee member. In this case u only tests
products until it finds a product it likes, or until
all K recommendations are exhausted. Consider the i th
recommendat ion it tests. Since committee members
are picked at random, and since u picked a random
recommendat ion as its i th product, we have tha t u
follows the recommendat ion of a random user. Let T~
be the type of u. Since Tu E T, the probabili ty
that a random user is of type Tu is IU(Tu)[/m >
1/k. Since the i th recommendation is good for u if
the i th committee member is of type T~, we get that
the probabil i ty tha t the first good recommendation
is the i th one is at least (1 - l / k) ~-1 • (l /k) . The
probabil i ty tha t u does not find a good recommendation
after trying all K of them is (1 - 1/k) K. Therefore, the
expected number ~Pu of products u tests is bounded by

E[cpu] < E ~ 1 - + K 1 -
i = 1

(< k + K 1 -

< k + Ke-]n(k/~)

= k + k l ~ (k / ~) _ O (k) . !
k/7

A detailed comparison of these results with those
of [4] appears in Section 5.
C r i t i q u e o f C o m m i t t e e A l g o r i t h m s . The idea of
committee, used in Algorithm .Acntr, has some serious
disadvantages. First, the individual recommendation
complexity of Acntr is ~(n), since a commit tee member
must test all products to make a recommendation. This
is not merely a formal objection, but ra ther a symptom
of the real difficulty in implementing a committee-
based algorithm (in [4] it was proposed to compensate
commit tee members for their efforts).

The second point is been seen in a distributed
implementat ion with malicious users. In this case,
even choosing a commit tee is a non-trivial task: how

A l g o r i t h m .Adist followed by each user
r e p e a t

Flip a coin.
If the result is "heads," select a product

uniformly at random and probe it.
If the result is "tails," select a user uni-

formly at random and probe the product
that user recommends.

un t i l a good product is found.
Recommend the good product and halt.

Figure 2: The distributed algorithm Adist.

will membership be determined? If users decide on
their own whether they are commit tee members, many
dishonest users might "volunteer" into the commit tee
and effectively hide the honest members. One possible
workaround for this problem is a random beacon [9] tha t
generates public coin flips. But even if we had a random
beacon at our disposal, any committee-based algorithm
is vulnerable to adaptive Byzantine at tacks that target
committee members. This is a very practical threat: one
real-world adaptive Byzantine adversary is the one who
thwarts the algorithm by bribing commit tee members.

Subsequently, in the following section we present
a distributed algorithm tha t does not use a commit tee
and does not suffer from these problems.

4 Distr ibuted Algori thm

This section presents a distributed solution to the rec-
ommendat ion problem tha t is resilient to arbitrari ly ma-
licious behavior from any fraction of the users. This al-
gori thm shows tha t it is possible to do away with the
committee altogether in a solution to the recommenda-
tion problem. Even more interesting, the correctness
of the algorithm does not depend on the existence of
any kind of cover. The analysis of the algori thm's rec-
ommendat ion complexity does depend on covers, but it
uses a significantly more relaxed notion of a cover by
"special interest groups," and not type covers.

4.1 A l g o r i t h m . The algorithm .Adist is very sim-
ple (see Figure 2): each honest user repeatedly either
chooses a random product and probes it, or chooses a
random user and probes the product tha t user recom-
mends. This is done by sending a message to tha t user,
to which the consulted user responds with the identity
of the best product he's probed so far (ties broken arbi-
trarily). When a user finds a good product, the user is
said to be satisfied and he stops running the algorithm.

1178

4.2 Analysis of recommendation complexity.
The basic property of Adist is stated in the following
theorem, which bounds the total recommendation com-
plexity of any set of users with a shared good product
under any asynchronous schedule and any adversary.

THEOREM 4.1. Let U be a nonempty set of h.onest
users and P be a nonempty set of products such that
P C good(u) for every u • U. For every operating
environment, the expected recommendation complexity
for users in U in an execution of Algorithm Adist is at
most 2 ('n/lPI + m in IUI).

P r o o f : To prove that the bound on expected recom-
mendation complexity holds for every operating envi-
ronment, let us fix an arbitrary environment £. Let a
be the random variable whose value is the sequence of
probes by users in U during an execution of Adist ill the
context of 8. Let a = a0crL " • ~rlg I where ere is the ran-
dora variable whose value is the subsequence of probes
preceded by exactly ~ probes by users in U of products
in P. In other words, exactly £ users in U have found
a product in P at the start of ae, and the final probe
of (re is by the (~ + 1)st user in U finding a product
in P. Notice that some users in U may be satisfied by
products outside of P, meaning that only a subset of
nsers in U actually probe a product in P, in which case
solne suffix ffj(Tj+l •. • ~r[u] of a may actually be empty.
Since users halt once they find a product in P, we can
bound the recommendation complexity by counting the
number of probes by users in U to products not in P.

Clearly count(a) = ~ l o co,unt(ae) is an upper bound
on tile total number of products tested by users in U as
they search for a good product.

Consider the cost of a0. With probability 1/2 the
algorithm chooses a random product to sample. Since P
is nonempty and there are n products, each probe in a0
probes a product in P with probability at least [PI/2n,
and hence E [count(~7o)] _< 2n/]P]. Now consider the
cost of ae for ~ > 0. With probability 1/2 the algorithm
chooses a user and samples its recommendation. Since
exactly g users in U have found a product in P when ae
begins, each probe in ae finds a product in P with
probability at least g/2m, so the expected number of
probes in ae is 2m/g. Thus,

lel

E [co'unt(cr)] = E [eount(cro)] + EE[c°unt(~re)]
£=1

2n ~ 2'm

£=1

) = 2 + m l n l d l . I

Intuitively, the analysis divides the execution into
two stages: ill the first stage, the users search for
a good object until one of them finds it due to the
"random product" probes; in the second stage, the
identity of that product is spread among the users by
the epidemic-style "random recommendation" probes.
It may be interesting to note that in a "steady state,"
when many users have halted, tile Mgorithm gives a
concrete distributed implementation of best-seller lists
by randomly sampling the users.

Theorem 4.1 holds unconditionally, but gives a good
bound oldy for a set of users with a common interest.
A good bound for most users can be obtained under
an assumption similar to that made in Theorem 3.2,
namely, the existence of (A,k)-type-cover. However,
Theorem 4.1 indicates that we can use a much weaker
notion, referred to as a special interest g,vup or SIG.
Intuitively, while users of the same type must have
exactly the same preferences, users in the same SIG
need only have a non-empty intersection of preferences.
Formally, we have tile following definition.

DEFINITION 4.1. A special interest group (SIG) S is a
set of honest users U(S) and a nonempty set of prod-
ucts P(S) satisfying the condition that every product
in P(S) is good for every user in U(S), namely,

u (s) c {~ • u I P (s) c good(u)}.

Given a collection S of special interest groups we write

v(s) aej Uses V(S).

A special interest group S, therefore, is a set of
users U(S) that would be satisfied by any product
in P(S) (and possibly by other products as well). The
set of products P(S) represents a common or special
interest of the users in U(S).

Using the concept of SIGs, we generalize Theo-
rem 4.1 as follows.

COROLLARY 4.1. Let S = {S1 , . . . , S e } be any collec-
tion of SIGs, and denote

~ (8) = max{IU(&)l , . . . , IU(Se)]} ,

'Ft(S) = In in{IP(S1) l , . . . , IP(&) l} -

The expected recommendation complexity for the users
in U(S) is at most

2 ~ (' ~ + m l n ' , h ($)) < 2 ~ (n + m l n m) .

Now we can compare .Adist to .Acntr: suppose, in
the spirit of Theorem 3.2, that there exists a small
collection of SIGs that cover most users (i.e., g = O(1) in

1 1 7 9

Corollary 4.1, and Iu(s)t > 1-A for asmall A). Then the
m

expected total recommendation complexity over most
users is just O(n + m In m) by Corollary 4.1, as opposed
to O(n + m) in Theorem 3.2. However, fl[dist improves
on A c n t r in that it tolerates malicious users, and in that
SIGs are used, and only to bound performance (rather
than requiring types, and to guarantee correctness).

4.3 I n d i v i d u a l r e c o m m e n d a t i o n c o m p l e x i t y in
t h e s y n c h r o n o u s m o d e l . Corollary 4.1 gives the
expected recommendation complexity for the algo-
rithm Adist, but what can we say about the individ-
ual recommendation complexity? Clearly the number
of products a user must probe to find a good one de-
pends how many other users from the same SIG are
probing. If the schedule is such that a user is running
alone, it will have to carry out the entire search on its
own. If a user is running concurrently with many oth-
ers from its SIG, it can expect the search to be dis-
tributed over all of these users, reducing the number
of products it has to probe itself. To get a handle on
individual costs, we study individual recommendation
complexity in a synchronous model where an execution
proceeds in a sequence of rounds. In each round, users
first send messages to other users, then get replies, and
finally probe a product. This model is different from the
one obtained by restricting the asynchronous nrodel to
round robin schedules: round robin schedules consist of
a sequence of atomic send-receive-probe steps, whereas
the synchronous rounds entail concurrent actions, and
therefore require a little more effort to analyze.

Our main result for this model is stated below.

T H E O R E M 4.2. Let S be any special interest g~vup.
If [U(S)[> ft(logm), then with probability at least
1 -.m -n(U, at least half of the users in U(S) have found

)) agoodpwductbytimeO\lu(S)l . P (~ + m .

P r o o f : Define a s d~_=f Iu(-s)l~ and /38 d=d Ip~s)I, i.e.,
c~s and /38 are the fractions of users and products,
respectively. Fix a constant c >_ 2, and assume that
c~s > 32clogm/m. Denote by p(t) the number of
recommendations by users in U(S) for products in P(S)
after t rounds. Any execution of the algorithm can be

rloo' _JL~_L~I.q phases, defined as viewed as having q = ~ ~, 4 c log m /

follows. Let f l = 1 a n d f k = 2kclogmfor2 < k < q-1.

1. For 1 _< k < q - 1, Phase i ends as soon as either
half the users in U(S) are satisfied or p(t) > fk.

2. Phase q ends when at least half the users in U(S)
are satisfied.

(Note that the two events defining the end of a phase are
not necessarily ordered, since generally, users in U(S)

can be satisfied by products other than those in P(S)
and similarly, products in P(S) can be recommended
by users other than those in U(S).)

For 1 < k < q, let tk be a random variable counting
P. 1. m] the number of rounds of Phase k. Let rl = |4cER(ggKg / ,

r2 = [Si~5_D_az~] rk = l ' 6 / for 3 < k < q - 1 arid
| ~ / ' . .g7 - -

[16(~+~)log,,,1 rq : / ~ /" Let £k denote the event that

tk > rk.

LEMMA 4.1. P [£k] --< m -c for every 1 < k < q.

P r o o f : We prove the lemma for each phase separately.

P h a s e 1: In every round of Phase 1, each unsatisfied
user probes a product in P(S) with probability at least

1 IP(S)l _ Zs By definition of Phase 1, at least half of
2 n 2 "

the users in U(S) are unsatisfied throughout the phase.
Hence P [£l] is bounded from above by the probability
that none of these users probes a product in P(S) in
any of the first rl rounds, i.e.,

(_~)lu(s)lrl/2
p [&] _< 1 -

< exp(-[u(s)[flsrl/4)

: exp(Iu(s)l~s4 Iu(s)l~s4cm"~) =m_~,

implying the lemma for Phase 1.

P h a s e 2: If Phase 1 ends when half the users in U(S)
are satisfied then the ends of Phase 1 and 2 coincide and
there is nothing to prove. So suppose Phase 2 begins
with at least one recommendation for a product in P(S),
but fewer than half the users in U(S) are satisfied. In
this case, each unsatisfied user u samples a product
of P(S) with probability at least 1 ~7~ in every round
of the phase. Hence u finds a product of P(S) in the
first rk rounds of Phase 2 with probability at least 1 - p
for p = (1 - 1 ' i t 2 ~ j . Note that

d 4 c hJ~. rn

p < 1 -

32clog m'~ 16clogm
_< exp]U(S)]) <- I [U(S)i ,

where the last inequality relies on the fact that
exp (-x) < l -x~2 for 0 < x < 1 and c~s. > 32c logm/m.
By definition of the phase, at least half of the users in
U(S) are unsatisfied throughout the phase. Let Hk de-
note the random variable counting the number of users
of U(S) that find a product of P(S) during the first rk
rounds of Phase k. It follows that the expected value

1180

of H2 satisfies

E[H2] > IV(S)[(1-p)
- 2

> IU(S)l 16clogm

- 2 IU(S)l

By Chernoff's bound,

- - 8 c l o g m .

Pig2] < P [H 2 < 4 c l o g m]

< exp(~ x 8 c l o g m) - - 4 ="'~-~'

implying the lemma for Phase 2.

P h a s e k f o r 3 < k < q - l : Again, if Phase k - l ends
when half the users in U(S) are satisfied then there is
nothing to prove, so suppose Phase k begins with at
least fk-1 recommendation for a product in P(S), but
fewer than half the users in U(S) are satisfied.

Assuming Phase k begins with at least fk-1 recom-
mendations for products in P(S), each unsatisfied user u

samples a product of P(S) with probability at least A.-a 2*n
in every round, hence u finds a product of P(S) in the
first rk rounds of Phase k with probability at least 1 - p

f o r p = 1 - 2m] . Note that

p < 1 - - ~ - ~ -] < exp ~ U ~] -< 1 IU(S) I '

where the last inequality relies on the fact that
exp(-x) < 1 - x/2 for 0 < x < 1 and fk-1 <_ IU(S)]/8
for k < q - 1. By definition of the phase, there are at
least I U(S)I/2 unsatisfied users throughout it. It follows
that the expected value of Hk satisfies

E[Hk] > I U (S) [(1 - p) > I u (s) L 4fk-1
- - 2 - - 2 " l U (S) l - - 2fk-1 .

By the Chernoff bound,

(~ 1 " 2fk-1) P [Hk < fk-1] <__ exp - •

) exp - g . 8 c l o g m = m - ~.

As Phase k begins with at least f k - ; recommendations
for products in P(S), we have that if Hk > fk-1
then after rk rounds of Phase k, the number of such
recommendations is at least f k - i + Hk k 2fk-x = fk,
implying -~$k. Hence P [gk] < m-%

P h a s e q: Again, if Phase q - 1 ends when half
the users in U(S) are satisfied then we are done, so
consider the case when Phase q begins with at least

fq-a recommendation for a product in P(S), but fewer
than half the users in U(S) are satisfied.

Assuming Phase q begins with at least

f~_, = 2q-~clogm > c log .~ . IU(S)I - I U (S) l
- 8c log m 8

recommendations for products in P(S), each unsatisfied
user u samples a product of P(S) with probability at

least ~ in every round, hence u fails to find a product 8m
of P(S) in the first rq rounds of Phase q with probability
at most

8m]
< e x p (f q ~ : r e
- \ 8rn J

(,U(S), . 16(c+1) logm)
< exp s as
- 2m

= exp (- (c+ 1)logm) = m -c - t .

Thus the probability that not all users of U(S) will be
satisfied after rq rounds is at most 'rn-% |

The theorem now follows by combining the claims of
the lemma for the separate phases and concluding that
the probability that any of the events $i has occurred,
for 1 < i < q + 1, is at most (q + 1)m -c _< m 1-~. Hence
with probability at least 1 - m 1-c, the total number of
rounds until at least half the users of U(S) were satisfied
was bounded by

q F lnm] [64clogm]
< }4ctu(s)t s / + , , -

k = l i as /

1)+ +
((' = o logm Iu(s) l ,~s +

as q = O(log m). |

Note that the theorem does not guarantee that
all users in the SIG will find a good product quickly:
this is because some of the users may be satisfied with
products not in P(S). The following lemma says that
if sufficiently many users of U(S) actually recommend
products from P(S), then all users in U(S) will be done
quickly.

LEMMA 4.2. Let S be any special interest group, and
suppose that at some time t, there are at least IU(S)I/2
recommendations for products in P(S). Then with
probability at least 1 - .m -f~(1), all users in U(S) will
find a good product by time t + ~ Iu(s)l J"

P r o o f : Let c > 4. We show that with probability at
least 1 - m 1-c/4, all users in U(S) will find a good

1181

product by time t + ch,___m Consider any user u E U(S)
Oz2; *

that has not found a good product by time t. Let
Pu denote the probability that u does not find a good
product within ct, ra rounds after time t. In each round
after time t, u follows the recommendation of a random
user with probability 1/2. By assumption, tiffs user
recommends a product fl'om P (S) with probability at

least Iu.(s)[/~ = as~2. Hence in each round after time t, 77/,
u will t ry a product from P(S) with probability at least
_12 " -~2 = ~ " It follows that

(- ~) (~ l " ' ~) / ~ _ e - (~ ' n ') / 4 . p~ < 1 - < = m -c/4

The result follows, since the probability that not all
c l n m i s a t s n o s t users in U(S) have finislmd by time t +

pu]U(S)I < pure. |

Theorem 4.2 and Lemma 4.2 yield the following
implication for the special case of types.

COROLLARY 4.2. Let T be any type. I f IU(T)] >
f~(logm), then with probability at least 1 - m -f~(1),
all users in U(T) have found a good product by time

0[-~-~..~- '~ m)) . \lu(s)l " ([P ~ +

P r o o f : By Theorem 4.2, with probability at least 1 -
m -~(1) there exists some time tl = O(log m(T~T~S~: +

~7)) by wlfich at least half of the users of U(T) have
found a good product. Since T is a type, the good
products all these users found are in P(T) . The result
hence follows from Lemma 4.2. |

We note that one can use either Theorem 4.2 or
Corollary 4.2 to bound the individual recommendation
complexity of users. It is clear that we can always
partition the set /L/ of users into equivalence classes
where two users u and v are in the same equivalence
class iff good(u) = good(v). Each equivalence class
naturally gives rise to a type T where U(T) is the set
of users in the class and P (T) is the set of products
they consider good. In this sense, we can always find
a type T containing u, and use T and Corollary 4.2 to
bound the recommendation complexity for u. However,
IU(T)] might be small. If there is a large SIG containing
u, then Theorem 4.2 allows us to get a tighter bound on
the individual recommendation complexity for at least
half of the members of that SIG.

5 D i s c u s s i o n o f resu l t s

In this section we compare the models used by the MR
algorithm in [4] and our centralized model as described
in Section 2. Since our model is a streamlined version
of the MR model, some (straightforward) analysis is
required to show that up to constant factors, our model
is no weaker than the MR model.

5.1 U s e r p r e f e r ences . The MR model uses real
values to model user preferences for products, whereas
we use binary values. We argue that using binary values
is simpler and does not restrict generality.

Specifically, the MR model assumes that there is
a preference vector A~ for each user u, a vector of
nonnegative real values such that the pth entry Au,p in
the vector is the preference value of product p in the eyes
of u. For each user u, the model defines a threshold Ou
in terms of A~, and defines a product p to be good for u
if Au,p > 0u. The model defines a recommendation to
be a small set of products, and a recommendation is
good for u if it contains a product that is good for u.

In contrast, we use binary preference values to
products, saying that u has preference 1 for p if p c
good(u) and 0 otherwise. This is justified simply
because our algorithms work for arbitrary numeric
values just as well. (As an aside, it appears that binary
data is often seems easier to collect, say by interpreting
a clicking on a product as endorsing it.) It may be
interesting to consider translating the MR model to the
binary model by replacing real preferences with binary
preferences by defining good(u) to be the products with
real preferences above 0u. This approach gives rise to
the more important question: can a user u decide on-
line if p E good(u)? The implication of the existence of
an on-line test (say, if the threshold value 0u is known
to u), is that users can stop as soon as they find a good
product. If no on-line test is available, then the best
one can hope for from an algorithm is to prove that if
the users test enough of the recommendations made by
the algorithm, they will be satisfied. Our distributed
algorithm is written assuming that an on-line test is
available (thus allowing early stopping), but can easily
be adapted to the case where no such test is available.

5.2 C o v e r s a n d ef fec t iveness . The analysis of
the MR algorithm uses a concept called (A,k)-
effectiveness. A set of users is said to be (A, k)-effective
for some real 0 <)~ < 1 and integer k > 0 if there
exists a subset of at least Am users that belong to at
most k types. In the analysis of Algorithm .Acntr, we
use a dual concept of (A, k)-type-covers. The following
lemma shows that the concepts of user effectiveness and
covers are equivalent up to constant factors.

LEMMA 5.1. Let ld be a set of users and good(u) be the
good products for a each user u E ld.

(1) I f there exists a (A, k)-type-cover for Lt, then bt
is (M, k')-effective for A' = A and k' = [Ak].

(2) I f ld is (A, k)-effective, then for any 0 < e _< 1, Lt
has a (M, k')-type-cover for A' = (1 - e)A and k' =
kl(Ae).

1182

P r o o f i S u p p o s e / / / h a s a (A, k)-type-cover T ' . To show
that /A is (A, [Ak])-effective, consider any subset 7- of T '
such tha t IT] = [Ak]. I t is sufficient to show tha t
IU(T)I > Am. This is t rue because by definition,
IU(T)I k ~ for each T E 7-', and U(T) N U(T') =
tbr any two distinct T , T ' E 7-'. Therefore IU(7-)I >_
[~k] '~ > .Xm.

T -
Conversely, suppose bt is (A, k)-effective, and fix

0 < ~ < 1. Let 7- = {T1 , Tk} be the type collection
indicated by the (X, k)-effectiveness assmnption. Then
IU(7-)I > Am. Define < = {T 6 7- I }U(T)I _> cAm/k}.
We claim tha t 7~ is a ((1 - e) l , k/(A~))-type-cover. By
definition, each type in ~ has at least Aem/k users,
hence the second cover requirenrent follows. To see tha t
also I g (<) l is as required, define "/~ = 7- \ 7~. By
definition, IU(T)I < e)~'m/k for each T c "/~. This yields
the required size bound, since

earn
IU(q~)I =)U(7-\T~')) > Am-k k - (l-c)Am. |

Cast ing the results of Theorems 3.1 and 3.2 in the
terminology of [4] and applying Lemma 5.1, we get the
following:

COROLLARY 5.1. If the users are (A',k')-effective for
some A' > 0 and k' > O, then for all ~ > 0 Theorems 3. I
and 3.2 hold with A = (1 - e)A' and k = k ' / (A'e) .

5 .3 T y p e d e v i a t i o n . An impor tan t aspect of
the MR model tha t we abs t rac t is type deviation.
Specifically, in the MR model, it is assumed tha t the
preference vector of each user is a r andom variable,
obtained by adding to the user 's type vector an "er-
ror vector." The error vector is assumed to consist
of n independent 0-mean r andom variables with vari-

a n c e a 2 = 2 for some s m a l l 0 < e < l .
m,-t-n

Assuming such a small magni tude of variance of
the errors, it is easy to justify our abstract ion: This
assumpt ion implies t ha t for each user and any p > 0,
with probabil i ty 1 - p, all preferences are at most

5 d~_f ~/x/P away from the type vector. This is because
Chebychev 's Inequal i ty says tha t the probabil i ty tha t
a user's preference for any specific p roduc t differs from
the canonical preference by more than 5 is less than

cr 2 e 2 e2 e2p p

5 2 (m + n)~ 2 n 5 2 n e 2 n

It follows tha t the probabil i ty tha t all the preferences
of a user differ from the type vector by at most 5 is at
least (1 - ~)n > 1 - p. Hence, for any given p > 0 we
can define a goodness predicate using a threshold 0 so
tha t all but a fraction p of the users have preferences
tha t agree with all o ther users of their type.

As an aside, we note t ha t SIGs may be viewed as
another (deterministic) abs t rac t ion of type deviation,
t ha t allows for much s t ronger noise models. We defer
discussion of this aspect to the full paper.

A c k n o w l e d g m e n t . The authors wish to thank Prab-
hakar Raghavan for his helpful comments .

R e f e r e n c e s

[1] B. Awerbuch, B. Patt-Shamir, D. Peleg, and M. Tattle.
Collaboration of untrusting peers with changing inter-
ests. In Proc. 5th ACM Conf. on Electronic Commerce
(EC), pages 112-119, May 2004.

[2] Y. Azar, A. Fiat, A. Karfin, F. McSherry, and J. Saia.
Spectral analysis of data. In Proe. 33rd A CM Syrup. on
Theory of Computing (STOC), pages 619---626, 2001.

[3] J. F. Canny. Collaborative filtering with privacy. In
Proc. IEEE Syrup. on Security and Privacy, pages 45-
57, 2002.

[4] P. Drineas, I. Kerenidis, and P. Raghavan. Compet-
itive recommendation systems, in Proc. 3~th ACM
Syrup. on Theory of Computing , pages 82-90, 2002.

[5] J. Kleinberg and M. Sandier. Convergent algorithms
for collaborative filtering. In Proc. ~th ACM Conf. on
Electronic Commerce (EC), pages 1-10, 2003.

[6] R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. Recommendation systems: A probabilis-
tic analysis. In Proc. IEEE Symp. on Foundations of
Computer Science (FOCS), pages 664-673, 1998.

[7] S. K. Lmn and J. Riedl. Shilling recommender systems
tbr fun and profit. In Proc. 13th Conf. on World Wide
Web (WWW), pages 393-402. ACM Press, 2004.

[8] M. P. O'Mahony, N. J. Hurley, and G. C. M. Silvestre.
Utility-based neighbourhood formation for efficient and
robust collaborative filtering. In Proe. 5th ACM Co@
on Electrvnic Commerce (EC), pages 260-261, 2004.

[9] M. O. Rabin. 'I5"ansaction protection by beacons. J.
of Comp. and Syst. Sc., 27(2):256-267, 1983.

[10] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom,
and J. Riedl. Grouplens: an open architecture for
collaborative filtering of netnews. In Proc. 1994 ACM
co@ on Computer Supported Cooperative Work, pages
175-186, 1994.

[11] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl.
Item-based collaborative filtering recommendation al-
gorithms. In Proc. lOth Int. Conf. on World Wide Web
(WWW), pages 285-295. ACM Press, 2001.

[12] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Anal-
ysis of recommendation algorithms for e-commerce. In
Proc. 2nd ACM Conf. on Electronic Commerce (EC),
pages 158-167. ACM Press, 2000.

[13] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pen-
nock. Methods and metrics tbr cold-start recommenda-
tions. In P'tvc. 25th Ann. Int. ACM SIGIR Conference
on Research and Development in Information Retrieval
(SIGIR '02), pages 253-260, 2002.

1183

