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ABSTRACT
We address optimization problems in which we are given
contradictory pieces of input information and the goal is to
find a globally consistent solution that minimizes the num-
ber of disagreements with the respective inputs. Specifi-
cally, the problems we address are rank aggregation, the
feedback arc set problem on tournaments, and correlation
and consensus clustering. We show that for all these prob-
lems (and various weighted versions of them), we can obtain
improved approximation factors using essentially the same
remarkably simple algorithm. Additionally, we almost settle
a long-standing conjecture of Bang-Jensen and Thomassen
and show that unless NP⊆BPP, there is no polynomial time
algorithm for the problem of minimum feedback arc set in
tournaments.
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1. INTRODUCTION
The problem of aggregating inconsistent information from

many different sources arises in numerous contexts and dis-
ciplines. For example, the problem of ranking a set of con-
testants or a set of alternatives based on possibly conflicting
preferences is a central problem in the areas of voting and
social choice theory. Specifically, combining k different com-
plete ranked lists on the same set of n elements into a single
ranking, which best describes the preferences expressed in
the given k lists, is known as the problem of rank aggrega-
tion. This problem dates back to as early as the late 18th
century when Condorcet and Borda each proposed voting
systems for elections with more than two candidates [11, 8].
There are numerous applications in sports, databases, and
statistics [14, 17] in which it is necessary to effectively com-
bine rankings from different sources. Another example of
aggregating information is the problem of integrating pos-
sibly contradictory clusterings from existing data sets into
a single representative cluster. This problem is known as
consensus clustering or ensemble clustering and can be ap-
plied to remove noise and inconguencies from data sets [18]
or combine information from multiple classifiers [30].
In the last half century, rank aggregation has been stud-

ied and defined from a mathematical perspective. In partic-
ular, Kemeny proposed a precise criterion for determining
the “best” aggregate ranking1 [24, 23]. Given n candidates
and k permutations of the candidates, {π1, π2, . . . , πk}, a
Kemeny optimal ranking of the candidates is the ranking
π that minimizes

Pk
i d(π, πi), where d(πj , πk) denotes2 the

number of pairs of candidates that are ranked in different
orders by πj and πk. For example, if πj = (1, 2, 3, 4) and
πk = (2, 3, 1, 4), then d(πj , πk) = 2 since elements 1 and 2
appear in different orders in the two rankings as do elements
1 and 3. In other words, a Kemeny optimal ranking mini-
mizes the number of pairwise disagreements with the given
k rankings. Throughout this paper we will slightly abuse
terminology and refer to the problem of finding a Kemeny
optimal ranking as the Rank-Aggregation problem.

1Historically known as Kemeny aggregation.
2The distance function d(·, ·) is known as the Kendall tau
distance.
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More recently, theRank-Aggregation problem has been
studied from a computational perspective. Finding a Ke-
meny optimal ranking is NP-hard [7] and remains NP-hard
even when there are only four input lists to aggregate [14].
This motivates the problem of finding a ranking that ap-
proximately minimizes the number of disagreements with
the given input rankings. Several 2-approximation algo-
rithms [12, 14] are known. In fact, if we take the best of
the input rankings, then the number of disagreements be-
tween this ranking and the k input rankings is no more than
twice optimal.
The problem of finding a globally consistent ranking based

on possibly conflicting pairwise information arises in the
well studied problem of feedback arc set in a digraph—
specifically as the feedback arc set problem on tournaments.
Throughout the paper, we refer to this problem as Fas-
Tournament. A tournament is a directed graph G =
(V,A) such that for each pair of vertices i, j ∈ V , either
(i, j) ∈ A of (j, i) ∈ A. The minimum feedback arc set is
the smallest set A′ ⊆ A such that (V, A − A′) is acyclic.
The size of this set is exactly the minimal number of back-
ward edges induced by a linear ordering of V . This problem
turns out to be useful in studying Rank-Aggregation, but
is also interesting in its own right. For example, imagine a
sports tournament where each player plays against every
other player once: How should we rank the players based on
these possibly non-transitive (inconsistent) outcomes? The
complementary problem to finding a minimum feedback arc
set is the maximum acyclic subgraph problem, also known
as the linear ordering problem.
The Rank-Aggregation problem can be cast as a spe-

cial case of weighted Fas-Tournament, where the objective
is to minimize the total weight of backward edges in a lin-
ear order of the vertices. When the weight of edge (i, j) is
the fraction of input rankings that order i before j, solving
Rank-Aggregation is equivalent to solving this weighted
Fas-Tournament instance.
The last problem we consider is that of clustering objects

based on complete but possibly conflicting pairwise infor-
mation. An instance of this problem can be represented by
a graph with a vertex for each object and a ’+’ or a ’-’ for
each pair of vertices, indicating that two elements should be
in the same or different clusters, respectively. The goal is
to cluster the elements so as to minimize the number of ’-’
edges within clusters and ‘+’ edges crossing clusters. We re-
fer to this problem as Correlation-Clustering (on com-
plete graphs). An analog to Rank-Aggregation is known
as the Consensus-Clustering problem. In this problem,
we are given k clusterings of the same set of n elements.
The goal is to find a clustering that minimizes the number
of pairwise disagreements with the given k clusterings.

1.1 Previous Work
The minimum feedback arc set problem can be approxi-

mated to within O(log n log log n) in general graphs [16, 28]
and has (at least) the same approximation hardness as the
vertex cover problem [22], which is 1.36 [13]. More than a
decade ago, Bang-Jensen and Thomassen conjectured that
the Fas-Tournament problem is NP-hard [5]. However,
for the past decade, no progress has been made on settling
this conjecture. In contrast, the minimum feedback vertex
set problem on tournaments is NP-hard [29] and is approx-
imable to within 2.5 [9]

We are not aware of any approximation for Fas-
Tournament that improves on the bound for the general
feedback arc set problem. The complementary maximiza-
tion problem on tournaments seems to be easier from an
approximation standpoint. Arora, Frieze and Kaplan [4]
and Frieze and Kannan [19] gave PTASs for the maximum
acyclic subgraph problem in dense graphs, which implies a
PTAS for the problem on tournaments.
There are two well-known factor 2-approximation algo-

rithms for Rank-Aggregation. One such approximation is
to pick one of the k given permutations at random. We will
call this algorithm Pick-A-Perm. The Spearman’s footrule
distance between two permutations πi and πj on n elements
is defined to be: F (πi, πj) =

Pn
k=1 |πi(k) − πj(k)|. The

footrule distance is no more than twice the Kemeny dis-
tance [12] and can be computed in polynomial time via a
minimum cost matching [14, 15]. These observations yield
another 2-approximation.

Correlation-Clustering has been studied both on gen-
eral and complete graphs. Both minimization and maxi-
mizing versions have been investigated. Bansal, Blum and
Chawla gave the first constant factor approximation for the
problem of minimizing disagreements on the complete graph
[6]. This factor was improved to 4 by rounding a linear pro-
gram [10]. The weighted version of this problem in which
edges have fractional ± assignments has also been studied.
Each edge is assigned fractional values w+

ij and w−
ij rather

than a discrete ′+′ or ′−′ label. When the edge weights
satisfy the probability constraints (i.e. w+

ij + w−
ij = 1 for all

edges), the best previous approximation factor was 7 [20, 6].
When the edge weights satisfy the probability and the trian-
gle inequality constraints (see Section 1.2), the best previous
approximation factor was 3 [20].

Correlation-Clustering on complete graphs is MAX-
SNP-hard [10] andConsensus-Clustering is NP-hard [31].
However, Consensus-Clustering is not known to be NP-
hard if the number of input clusters is constant [18]. Anal-
ogously to Rank-Aggregation, choosing the best clus-
ter out of the given k input clusters (algorithm Pick-A-
Cluster) is an expected 2-approximation algorithm and 2
was the best previously known approximation factor for this
problem.

1.2 Our Results
We give improved approximation algorithms for the fol-

lowing optimization problems: (i) Fas-Tournament, (ii)
Rank-Aggregation, (iii) Correlation-Clustering and
(iv) Consensus-Clustering. We show that they can all be
approximated using essentially the same remarkably simple
algorithm. For example, the algorithm for Fas-
Tournament, called Fas-Pivot, is as follows: First, we
pick a random vertex i to be the “pivot” vertex. Second, we
place all vertices connected to i with an in-edge on the left
side of i and all vertices connected to i with an out-edge on
the right side of i. We then recurse on the two tournaments
induced by the vertices on each side.
The analysis of Fas-Pivot yields a 3-approximation algo-

rithm for Fas-Tournament, improving on the best-known
previous factor of O(log n log log n). Our analysis relies on a
new technique for arguing a lower bound for Fas-
Tournament by demonstrating a fractional packing of edge
disjoint directed triangles. We apply this algorithm to Rank-
Aggregation as follows. We convert the Rank-Aggre-
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gation instance into a weighted Fas-Tournament instance,
which we then convert to an unweighted Fas-Tournament
instance using the majority tournament (see Definition 1).
Finally we run Fas-Pivot on this majority tournament. Al-
though this algorithm by itself is yet another 2-approxima-
tion, the following is an 11/7-approximation: run both Fas-
Pivot and Pick-A-Perm and output the best solution.
This improved approximation ratio is due to the fact that
each algorithm does well on instances in which the other
algorithm does poorly.
For Correlation-Clustering and Consensus-Clus-

tering we present similar combinatorial algorithms and anal-
yses which, interestingly, give results that are analogous to
the results for Fas-Tournament and Rank-Aggregation
and improve upon previously known approximation factors.
A simple lower bound on the value of an optimal solu-

tion for weighted Fas-Tournament is to take the sum over
all vertices i < j of min{wij , wji}. In contrast, our anal-
ysis uses a stronger lower bound based on the weight of
directed triangles (“bad triangles”) in the majority graph.
Interestingly, the analysis of our simple combinatorial al-
gorithm bounds the integrality gap of a natural LP relax-
ation for Fas-Tournament. In fact, it demonstrates an LP
dual solution based on probabilities of random events oc-
curing during the execution 3. A similar analysis is done
for Consensus-Clustering, with a different notion of “bad
triplets”.
Our analysis is applied to various cases of weighted Fas-

Tournament (resp. weighted Correlation-Clustering).
More precisely, we analyze the following cases:

(i) Probability Constraints: wij+wji = 1 (resp. w+
ij+

w−
ij = 1) for all i, j ∈ V .

(ii) Triangle Inequality: wij ≤ wik + wkj (resp. w−
ij +

w−
jk ≤ w−

jk) for all i, j, k ∈ V .

(iii) Aggregation: Edge weights are a convex combination
of actual permutations (resp. clusters). Constraints (i)
and (ii) are implied in this case.

Table 1 summarizes the approximation factors we achieve
for the different scenarios with the combinatorial algorithms.
Additionally, we consider LP relaxations for Fas-Tourna-
ment and Correlation-Clustering. After choosing a
pivot vertex, instead of deterministically placing vertices on
the right or left side (in Fas-Pivot), or in a cluster (in
CC-Pivot), we decide randomly based on LP values. This
results in vastly improved approximation factors. We state
improvements on the approximation guarantees obtainable
via our LP rounding techniques based on inequalities that
are proven in [1].
Finally, we show that Fas-Tournament has no polyno-

mial time algorithm assuming NP�BPP. The question of
NP-hardness of Fas-Tournament has been a long-standing
conjecture of Bang-Jensen and Thomassen [5]. We show a
randomized reduction from the problem of finding a mini-
mum feedback arc set in general digraphs (which is known to
be NP-hard) to the special case of tournaments. This proof
has been recently derandomized by Noga Alon [2], and the
conjecture is therefore proven completely. We present the
weaker randomized version here.
3We will not pursue the discussion on the dual LP in this
extended abstract.

Ordering Clustering
Unweighted
Tournaments

3 (*) 3 (4)[10]

Probability
Constraints (i) 5 (*) 5 (9) [10, 6]

Triangle
Inequality (ii) 3 (*) N/A (**)

Probability
Constraints +
Triangle
Inequality
(i,ii)

2 (*) 2 (3) [20]

Aggregation (iii) 11/7 (2) 11/7 (2)

Table 1: The previous best-known factors are shown
in parentheses. (*) The best-known factor was
the O(log n log log n) algorithm [16, 28] for digraphs.
(**) Our techniques cannot directly be applied to
weighted Correlation-Clustering with triangle in-
equality but no probability constraints.

1.3 Organization
In Section 2, we give precise problem statements and defi-

nitions. In Section 3, we present Fas-Pivot and analyze its
approximation guarantee, introducing the basic ideas we use
throughout the paper. In Section 4, we extend these ideas
to approximate weighted Fas-Tournament . In Section 5,
we further extend our techniques to approximate Rank-
Aggregation. In Section 6, we discuss Correlation-
Clustering and Consensus-Clustering. In Section 7, we
extend our ideas to round LP’s for Fas-Tournament and
Correlation-Clustering. In Section 8, we prove hard-
ness results for Fas-Tournament. In Section 9 we discuss
open problems and future work.

2. PRELIMINARIES AND DEFINITIONS
We study the following problems in this paper. In what

follows, we fix a ground set V = {1, . . . , n}.
Fas-Tournament: (Minimum Feedback Arc Set in Tour-

naments) We are given a tournament G = (V,A) (a digraph
with either (i, j) ∈ A or (j, i) ∈ A for all distinct i, j ∈ V ).
We want to find a permutation π on V minimizing the num-
ber of pairs i, j such that i <π j and (j, i) ∈ A (back-
ward edges w.r.t. π)4. In a weighted Fas-Tournament
instance, we are given weights wij ≥ 0 for all ordered i, j ∈
V . We want to find a permutation π on V minimizingP

i,j:i<πj wji. Clearly, the unweighted case can be encoded
as a 0/1 weighted case.

Rank-Aggregation: We are given a list of k permuta-
tions (rankings) π1, .., πk on V . We want to find a permuta-
tion π minimizing the sum of distances

Pk
i=1 d(π, πi), where

d(π, ρ) is the number of pairs i, j such that i <π j but j <ρ i
(the Kemeny distance).

Correlation-Clustering: Between any two unordered
i, j ∈ V we either have a (+) or a (−) relation. We let
E+ (resp. E−) denote the set of pairs i �= j which are
(+)-related (resp. (−)-related). We want to find disjoint
clusters C1, . . . , Cm covering V and minimizing the num-
4By i <π j we mean that π ranks i before j.

686



ber of disagreement pairs ((+) pairs in different clusters or
(−) pairs in the same cluster). In a weighted Correlation-
Clustering instance, we assign for each pair i, j two weights
w+

ij ≥ 0 and w−
ij ≥ 0. The cost of a clustering will now be the

sum of w+
ij over all i, j in different clusters, plus the sum of

w−
ij over all i, j in the same cluster. Clearly, the unweighted

case can be encoded as a 0/1 weighted case.
Consensus-Clustering: We are given a list of k differ-

ent clusterings C1, . . . , Ck of V , and we wish to find one clus-
tering C that minimizes

Pk
i=1 d(C,Ci), where the distance

d(C,D) between two clusterings is the number of unordered
paris i, j ∈ V that are clustered together by one and sepa-
rated by the other.

Definition 1. Given an instance (V,w) of weighted Fas-
Tournament, we define the unweighted majority tourna-
ment Gw = (V,Aw) as follows: (i, j) ∈ Aw if wij > wji. If
wij = wji, then we decide (i, j) ∈ Aw or (j, i) ∈ Aw arbitrar-
ily. Given an instance (V,w+, w−) of weighted Correla-
tion-Clustering, we define the unweighted majority in-
stance (V,E+

w , E−
w ) as follows: (i, j) ∈ E+

w if w+
ij > w−

ij,
and (i, j) ∈ E−

w if w−
ij > w+

ij. If w+
ij = w−

ij , then we decide
arbitrarily.

Note that although the majority instances depend on the
weights of the weighted instances, they are unweighted in-
stances.

3. MINIMUM FEEDBACK ARC SET IN
TOURNAMENTS

Let G = (V,A) be a Fas-Tournament instance. We
present the following algorithm Fas-Pivot for approximat-
ing it.

Fas-Pivot(G = (V, A))

Set VL → ∅, VR → ∅.
Pick random pivot i ∈ V .

For all vertices j ∈ V \ {i}:
If (j, i) ∈ A then

Add j to VL (place j on left side).
Else (If (i, j) ∈ A)

Add j to VR (place j on right side).

Let GL = (VL, AL) be tournament induced by VL.
Let GR = (VR, AR) be tournament induced by VR.

Return order Fas-Pivot(GL),i,Fas-Pivot(GR).
(Concatenation of left recursion, i, and right recursion.)

Theorem 2. Algorithm Fas-Pivot is a randomized ex-
pected 3-approximation algorithm for Fas-Tournament.

Proof. Let COPT denote the cost of an optimal solution.
Let CPIV denote the cost of Fas-Pivot on G = (V,A). We
want to show that E[CPIV ] ≤ 3COPT .
An edge (i, j) ∈ A becomes a backward edge if and only

if there exists a third vertex k such that (i, j, k) form a di-
rected triangle5 in G and k was chosen as a pivot when all
three were input to the same recursive call. Pivoting on k

5In what follows we will use (i, j, k) to denote the directed
triangle i → j,j → k, k → i. It will be clear from the context
whether a triangle is the set of its vertices or its edges.

would then place i to its right and j to its left, rendering
edge (i, j) backward. In this case, we will charge a unit cost
of the backward edge (i, j) to the directed triangle (i, j, k).
Let T denote the set of directed triangles. For a directed tri-
angle t ∈ T , denote by At the event that one of its vertices is
chosen as pivot when all three are part of the same recursive
call. Let pt denote the probability of event At. Now we ob-
serve, that a triangle t is charged a unit cost exactly when At

occurs, and it can be charged at most once. Therefore, the
expected cost of Fas-pivot is exactly E[CPIV ] =

P
t∈T pt.

Clearly, if we had a set of edge disjoint triangles, then
a lower bound for COPT would be its cardinality. This is
also true fractionally : If {βt}t∈T is a system of nonnegative
weights on triangles in T such that for all e ∈ A,

P
t:e∈t βt ≤

1, then COPT ≥Pt∈T βt. Indeed, consider the following LP
relaxation for the problem: minimize

P
e∈A xe, subject to

xe1 +xe2 +xe3 ≥ 1 for edge sets {e1, e2, e3} ∈ T , and xe ≥ 0
for all e ∈ A. The solution to this LP clearly lower bounds
COPT . It is easy to show that a packing {βt} is a feasible
solution to the dual LP, hence a lower bound on the optimal.
We will demonstrate such a packing using the probabili-

ties pt. Let t = (i, j, k) be some triangle. Conditioned on
the event At, each one of the 3 vertices of t was the break-
ing vertex with probability 1/3, because all vertices input
to a recursive call are chosen as pivot with equal probabil-
ity. Therefore, any edge e = (i, j) of t becomes a backward
edge with probability 1/3 (still, conditioned on At). Let Be

denote the event that e becomes a backward edge. Clearly,
if At occured then Be occured if and only if k was the first
chosen pivot among i, j, k. Then we get that for all t ∈ T
and e ∈ t,

Pr[Be ∧ At] = Pr[Be|At] Pr[At] =
1
3
pt.

The main observation of this proof is as follows: For two dif-
ferent triangles t, t′ ∈ T sharing an edge e, the events Be∧At

and Be ∧At′ are disjoint. Indeed, if e is charged to triangle
t, then the endpoints of e are split between two different
recursive calls, and event At′ cannot occur. Therefore, for
all e ∈ E, X

t:e∈t

1
3
pt ≤ 1 . (1)

So {pt/3}t∈T is a fractional packing of T . Thus, COPT ≥P
t∈T pt/3 = E[CPIV ]/3, as required.

4. MINIMUM FEEDBACK ARC SET IN
WEIGHTED TOURNAMENTS

Let (V,w) be a weighted Fas-Tournament instance. We
suggest the following approximation algorithm: construct
the unweighted majority tournament Gw = (V,Aw) and re-
turn the ordering generated by Fas-Pivot(Gw). We analyze
this algorithm.
For an edge e = (i, j) ∈ Aw, we let w(e) = wij , and

w̄(e) = wji = 1 − w(e) ≤ w(e). Fix an optimal solution π∗,
and let c∗(e) denote the cost incurred to it by e = (i, j) ∈
Aw, that is, c∗(e) = w(e) if j <π∗ i, else c∗(e) = w̄(e).
So COPT =

P
e∈Aw

c∗(e). Let T denote the set of directed
triangles in Gw. For any t = (e1, e2, e3) ∈ T , we define
c∗(t) = c∗(e1)+c∗(e2)+c∗(e3), w(t) = w(e1)+w(e2)+w(e3).
Finally, let CPIV denote the cost the solution returned by
Fas-Pivot(V, Gw).
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Theorem 3. For an instance (V,w) of weighted Fas-
Tournament, if there exists a constant α > 0 such that
w(t) ≤ αc∗(t) for all t ∈ T , then E[CPIV ] ≤ αCOPT , i.e.
Fas-Pivot(Gw) is an expected α-approximation solution.

Proof. We generalize techniques presented in Section 3.
When FAS-Pivot is run on Gw, an edge e ∈ Aw is heavily
charged if it becomes a backward edge, and thus incurs the
heavy cost w(e). It is lightly charged if it incurs the light cost
w̄(e). Clearly, e = (i, j) ∈ Aw is heavily charged if and only if
a third vertex k is chosen as pivot when all three i, j, k are in
the same recursive call, and (i, j, k) form a directed triangle
in Gw. We charge this cost to triangle t = (i, j, k). Again
we consider the set T of directed triangles in Gw, and their
corresponding events At with probability pt (see Section 3).
Fix a triangle t ∈ T with edges e1, e2, e3. Conditioned on At,
each of e1, e2 and e3 are equally likely to be heavily charged,
so the expected charge of t is 1

3ptw(t). The probability that
an edge e ∈ Aw does not incur a heavy cost (not charged
to a triangle t ∈ T ) is exactly 1 − Pt:e∈t

1
3pt. Therefore,

E[CPIV ] = BPIV + FPIV , where

BPIV =
X
t∈T

1
3
ptw(t)

FPIV =
X

e∈Aw

 
1 −

X
t:e∈t

1
3
pt

!
w̄(e).

We rearrange the sum COPT =
P

e∈T c∗(e) as COPT =
BOPT + FOPT , where

BOPT =
X
t∈T

1
3
ptc

∗(t)

FOPT =
X

e∈Aw

 
1 −

X
t:e∈t

1
3
pt

!
c∗(e) .

Notice that for all e ∈ Aw, the term (1 −Pt:e∈t
1
3pt) is

nonnegative (see Section 3). Obviously, FPIV ≤ FOPT ,
because w̄(e) ≤ c∗(e) for any e ∈ Aw. Therefore, if for some
α > 0, w(t) ≤ αc∗(t) for all t, then E[CPIV ] ≤ αCOPT as
required.

Lemma 4. If the weights satisfy the probability constraints
(wij + wji = 1), then w(t) ≤ 5c∗(t) for all t ∈ T . If
the weights satisfy the triangle inequality constraints (wij ≤
wik + wkj), then w(t) ≤ 3c∗(t) for all t ∈ T . If the weights
satisfy the combined constraints, then w(t) ≤ 2c∗(t) for all
t ∈ T .

Proof. First assume probability constraints on the weights.
In this case, we claim that w(t) ≤ 5c∗(t). Indeed, in this
case w(e) ≥ 1/2 for all e ∈ Aw, and w̄(e) = 1 − w(e). Fix a
triangle t containing edges e1, e2, e3, and assume

1/2 ≤ w(e1) ≤ w(e2) ≤ w(e3) ≤ 1 . (2)

Clearly, w(t) = w(e1) +w(e2) +w(e3) ≤ 2+w(e1). Any so-
lution has to direct at least one of the edges in t backwards,
therefore c∗(t) ≥ w(e1). Since w(e1) ∈ [1/2, 1], we therefore
have w(t) ≤ 5c∗(t). Consequently, FAS-Pivot has an ex-
pected approximation ratio of at most 5 on weighted tourna-
ment instances with probability constraints on the weights.
Assume that in addition to the probability constraints, the
weights satisfy the triangle inequality. So w(t) ≤ 2. But

the optimal solution has to pay the price of at least one
backward edge, so

c∗(t) ≥ w(e1) + w̄(e2) + w̄(e3) ≥ 2w(e1)

(the right inequality follows from the triangle inequality
w̄(e2) + w̄(e3) ≥ w(e1)). Finally, w(e1) ≥ 1/2 and there-
fore c∗(t) ≥ 1 and w(t) ≤ 2c∗(t). Consequently FAS-
Pivot has an expected approximation ratio of at most 2 on
weighted tournament instances with both triangle inequality
and probability constraints on the weights.
Now we assume that the edge weights satisfy the triangle

inequality, but not necessarily the probability constraints.
Fix t ∈ T with edge weights w(e1), w(e2), w(e3). Assume
(2) holds. Showing that c∗(t) ≥ w(e3) will prove the lemma
for this case. There are 6 possible ways in which the opti-
mal solution can order the vertices of t. For 3 possiblities,
e3 becomes a backward edge, and therefore c∗(t) ≥ w(e3).
The other 3 are analyzed case by case. If e3 and e2 are
forward edges but e1 is a backward edge, then c∗(t) =
w(e1)+w̄(e2)+w(e3) ≥ w̄(e1)+w̄(e2)+w̄(e3). But by the tri-
angle inequality, w̄(e1)+ w̄(e2) ≥ w(e3), so c∗(t) ≥ w(e3), as
required. If e3 and e1 are forward edges but e2 is a backward
edge, we argue similarly. If e3 is a forward edge but e1, e2
are backward edges, then c∗(t) = w(e1) + w(e2) + w̄(e3) ≥
w̄(e1)+ w̄(e2)+ w̄(e3), which is, again, at least w(e3) by the
triangle inequality. This completes all the cases.

Combining Theorem 3 and Lemma 4, we get

Theorem 5. Running algorithm Fas-Pivot on Gw gives
an expected 5, 3 and 2 approximation for the probability con-
straints case, the triangle inequality constraints case, and
the combined constraints case, respectively.

5. AN IMPROVED APPROXIMATION
RATIO FOR RANK AGGREGATION

Let {π1, . . . , πk} be a Rank-Aggregation instance over
some V . Consider the corresponding equivalent weighted
Fas-Tournament instance (V,w) (where wij is the frac-
tion of inputs ranking i before j). Clearly, this weight sys-
tem {wij} is a convex combination of acyclic tournaments.
Therefore, by linearity, the edge weights obey the probabil-
ity constraints and the triangle inequality constraints. Theo-
rem 5 shows that we get a 2 approximation for this case, but
the additional structure in these instances allows us to im-
prove upon this factor. As stated in the introduction, there
already exists a well known 2-approximation algorithm for
Rank-Aggregation:

Pick-A-Perm({π1, π2, . . . πk})
Output a permutation πi chosen uniformly at random
from the input permutations.

(In practice, we can pick the permutation πi that minimizes
the cost, but we use the randomized version for the anal-
ysis). Let CPAP denote the cost of Pick-A-Perm on the
Rank-Aggregation instance. Let Gw = (V,Aw) be the
corresponding unweighted majority tournament. Using no-
tation from Section 4, Let z(e) = 2w(e)w̄(e). We claim that

E[CPAP ] =
X

e∈Aw

z(e) . (3)
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Indeed, edge e ∈ Aw becomes a backward (resp. forward)
edge with probability w̄(e) (resp. w(e)), in which case it
incurs the cost of w(e) (resp. w̄(e)). For a directed triangle
t = (e1, e2, e3) ∈ T , we let z(t) = z(e1) + z(e2) + z(e3). The
following theorem shows how to analyze a “convex combi-
nation” of Fas-Pivot and Pick-A-Perm:

Theorem 6. If there exist constants β ∈ [0, 1] and γ > 0
such that

βw(t) + (1 − β)z(t) ≤ γc∗(t) for all t ∈ T, and

β + 2(1 − β) ≤ γ,

then the best of Fas-Pivot and Pick-A-Perm is a
γ-approximation for Rank-Aggregation.

Proof. We use the notation COPT , FOPT , BOPT , c∗(e),
c∗(t) defined in Section 4. We rearrange (3) as E[CPAP ] =
BPAP + FPAP , where

BPAP =
X
t∈T

1
3
ptz(t)

FPAP =
X

e∈Aw

(1 −
X
t:e∈t

1
3
pt)z(e) .

Clearly, FPAP ≤ 2FOPT , because z(e) ≤ 2c∗(e) for any
e ∈ Aw and (1 −Pt:e∈t

1
3pt) ≥ 0.

If we now have β, γ as in the statement of the theorem,
then

βE[CPIV ] + (1 − β)E[CPAP ]

= βBPIV + (1 − β)BPAP + βFPIV + (1 − β)FPAP

=
X
t∈T

1
3
pt(βw(t) + (1 − β)z(t))

+
X

e∈Aw

 
1 −

X
t:e∈t

1
3
pt

!
(βw̄(e) + (1 − β)z(e))

≤
X
t∈T

1
3
pt(βw(t) + (1 − β)z(t))

+
X

e∈Aw

 
1 −

X
t:e∈t

1
3
pt

!
(βc∗(e) + (1 − β)2c∗(e))

≤
X
t∈T

1
3
ptγc

∗(t) +
X

e∈Aw

 
1 −

X
t:e∈t

1
3
pt

!
γc∗(e)

= γCOPT ,

as required.

Lemma 7. For all t ∈ T ,

3
7
w(t) +

4
7
z(t) ≤ 11

7
c∗(t) .

Proof. We want to show that

f(t) =
3
7
w(t) +

4
7
z(t)− 11

7
c∗(t) ≤ 0,

where (slightly changing notation) t = (w1, w2, w3) and

w(t) = w1 + w2 + w3

z(t) = 2w1(1 − w1) + 2w2(1 −w2) + 2w3(1 − w3)
c∗(t) = 1 − w2 + 1 − w3 + w1

1/2 ≤ w1 ≤ wj ≤ 1 for j = 2, 3
w1 + w2 + w3 ≤ 2

The proof can be completed by finding the global maxi-
mum of f(t) on the defined polytope using standard tech-
niques of multivariate calculus. We omit the details from
this version.

Theorem 8 follows from Theorem 6 and Lemma 7, using
β = 3/7 and γ = 11/7:

Theorem 8. The best of Fas-Pivot on Gw and Pick-A-
Perm is an expected 11/7 approximation for Rank-
Aggregation.

6. CORRELATION CLUSTERING AND
CONSENSUS CLUSTERING

In this section, we show how to apply the techniques
presented in Section 3 to Correlation-Clustering and
Consensus-Clustering. Disagreements in the output so-
lution can also be charged to bad triplets, which will be de-
fined shortly. The bad triplets replace the role taken by
the directed triangles in tournaments. Let (V,E+, E−) be
a Correlation-Clustering instance. Our algorithm CC-
Pivot, which is an analog of Fas-Pivot, is defined as fol-
lows:

CC-Pivot(G = (V, E+, E−))

Pick random pivot i ∈ V .
Set C = {i}, V ′ = ∅.

For all j ∈ V, j �= i:
If (i, j) ∈ E+ then

Add j to C
Else (If (i, j) ∈ E−)

Add j to V ′

Let G′ be the subgraph induced by V ′.

Return clustering C,CC-Pivot(G′) .

As in the analysis of Fas-Pivot, a pair i, j incurs a unit
cost if a third vertex k is chosen as pivot when the triplet
(i, j, k) is in the same recursive call, and there are two (+)
and one (−) relations among i, j, k (doesn’t matter in which
order). A triplet (i, j, k) is therefore a bad triplet if it has
two (+) and one (−) relations6. Let T denote the set of (not
necessarily disjoint) bad triplets. For each t = (i, j, k) ∈ T
we define At as the event that all three i, j, k are in the same
recursive call when the first one among them was chosen as
pivot. Let pt denote the probability of At. The analysis
continues identically to that of Fas-Pivot.

Theorem 9. Algorithm CC-Pivot is a randomized ex-
pected 3-approximation algorithm for Correlation-
Clustering.

Now let (V,w+, w−) be a weighted Correlation-Clus-
tering instance. Unlike weighted Fas-Tournament, we
will only consider weight systems that satisfy the probability
constraints w+

ij +w−
ij = 1. We create the unweighted major-

ity Correlation-Clustering instance Gw = (V,E+
w , E−

w )

6A Correlation-Clustering instance with no bad
triplets induces a consistent clustering, just as a tournament
with no 3-cycles is acyclic. Our algorithms have an optimal
cost of 0 on these instances.
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and return the clustering generated by CC-Pivot(Gw). Us-
ing the same analysis as in Section 4, we can show that this
algorithm gives an expected 5 approximation.
Triangle inequality constraints in weighted Correlation-

Clustering have the following form: for all i, j, k, w+
ij +

w+
jk +w−

ik ≤ 2. (Equivalently, w−
ik ≤ w−

ij +w−
jk.) Theorem 10

is analogous to Theorem 5:

Theorem 10. Algorithm CC-Pivot on Gw is a 5 (resp.
2) approximation for weighted Correlation-Clustering
with probability constraints (resp. with probability and tri-
angle inequality constraints).

The proof is almost identical to that of Theorem 5, with
“+ + −” (bad) triplets in Gw replacing the role of directed
(bad) triangles in tournaments.
Solving Consensus-Clustering is equivalent to solving

weighted Correlation-Clustering with w+
ij (resp. w−

ij)
as the fractional number of input clusters with a (+) (resp.
(−)) relation between i and j. This weighted Correlation-
Clustering instance obeys both the probability constraints
and the triangle inequality constraints, but we can do bet-
ter than the 2 approximation guaranteed by Theorem 10.
Analysis almost identical to the one in Section 5 gives an
expected 11/7 approximation for this case. The CC-Pivot
is coupled with Pick-A-Cluster, which is defined analo-
gously to Pick-A-Perm: Simply return a cluster chosen
uniformly at random from the list.

Theorem 11. The best of CC-Pivot on Gw and Pick-
A-Cluster has an expected approximation ratio of at most
11
7 for Consensus-Clustering.

7. USING THE PIVOT SCHEME FOR
ROUNDING THE LP

We show how the techniques introduced above can be used
for rounding the LP’s for Fas-Tournament and Corre-
lation-Clustering. We consider the LP’s given in Fig-
ure 1 [27, 10]. Given a solution to the LP, we consider
algorithms FasLP-Pivot and CCLP-Pivot (Figure 1) for
rounding the solutions for Fas-Tournament and Corre-
lation-Clustering, respectively. The main idea of these
algorithms is that, after we choose some pivot, we use the
LP solution variables to randomly decide where to put all
other vertices, instead of deciding greedily.

Theorem 12. FasLP-Pivot returns a ranking with an
expected cost of at most 2.5 (resp. 2) times the LP so-
lution for Fas-Tournament, when the weights satisfy the
probability constraints (resp. the probability constraints and
the triangle inequality constraints). The best of FasLP-
Pivot and Pick-A-Perm returns a ranking with an ex-
pected cost of at most 4/3 times the LP solution for Rank-
Aggregation. CCLP-Pivot returns a clustering with an
expected cost of at most 2.5 (resp. 2) times the LP solu-
tion for Correlation-Clustering, when the weights sat-
isfy the probability constraints (resp. the probability con-
straints and the triangle inequality constraints). The best of
CCLP-Pivot and Pick-A-Cluster returns a ranking with
an expected cost of at most 4/3 times the LP solution for
Consensus-Clustering.

Note that these bounds imply bounds on the integrality gaps
of the LP relaxation for the different cases.

Proof. We prove these bounds by reducing the problem
to proving global bounds of certain multinomials in high di-
mensional polytopes. We start with the analysis of FasLP-
Pivot. A similar analysis is done for CCLP-Pivot.
Let CPIV

LP denote the cost of the ordering returned by the
rounding algorithm FasLP-Pivot. We have the notion of
pairs i, j that are charged dangerously and safely. The safe
edges are charged when one of their endpoints is chosen as
pivot, and the other endpoint is in the same recursive call.
The expected cost of pairs that are charged safely in FasLP-
Pivot is

xijwji + xjiwij , (4)

which is exactly the contribution to the LP solution. We let
c∗
ij denote expression (4). So the value of the LP solution is
CLP =

P
i<j c

∗
ij .

A pair i, j is charged dangerously when a third vertex k is
chosen as pivot, all three i, j, k are in the same recursive call,
and i, j are placed on opposite sides of k. The charge is wij

(resp. wji) if j (resp. i) is placed on the left side of k and i
(resp. j) on its right. In either case, we charge this cost to
the triplet i, j, k. We let T denote the set of all triplets of
distinct vertices, and for any t = {i, j, k} ∈ T we denote by
At the event that all of i, j, k are in the same recursive call
when the first one among them is chosen as pivot. Let pt

denote the probability of At. Let Bt
ij denote the event that

(i, j) is dangerously charged to triangle t, in that order (i to
the left, j to the right). Then we have for any t = {i, j, k},

Pr[At ∧ Bt
ij ] = Pr[At] Pr[Bt

ij |At] =
1
3
ptxikxkj .

(The 1/3 comes from the fact that conditioned on At, each
one of i, j, k was equally likely to be the pivot vertex.) De-
note pt

ij = 1
3xikxkj . So the total expected charge to a triplet

t = {i, j, k} is pty(t), where

y(t) = pt
ijwji + pt

jiwij + pt
jkwkj + pt

kjwjk + pt
kiwik + pt

ikwki.

Now we notice that for any t = {i, j, k} and t′ = {i, j, k′}
(two triplets sharing a pair i, j), the events At ∧ (Bt

ij ∨Bt
ji)

and At′ ∧ (Bt′
ij ∨Bt′

ji) are disjoint, because a pair i, j can be
split into two different recursion branches only once. Thus,X

t:i,j∈t

pt(pt
ij + pt

ji) ≤ 1 .

The above expression is exactly the probability that the pair
i, j is dangerously charged. Therefore, the total expected
cost of FasLP-Pivot is E[CPIV

LP ] = BPIV
LP + FPIV

LP , where

BPIV
LP =

X
t

pty(t)

FPIV
LP =

X
i<j

 
1 −

X
t:i,j∈t

pt(pt
ij + pt

ji)

!
c∗
ij .

The following expression is a rearrangement of the sum
CLP =

P
i<j c

∗
ij : CLP = BLP + FLP , where

BLP =
X

t

pt

X
{i,j}⊆t

(pt
ij + pt

ji)c
∗
ij

FLP =
X
i<j

 
1 −

X
t:i,j∈t

pt(pt
ij + pt

ji)

!
c∗
ij .
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LP for weighted Fas-Tournament LP for weighted Correlation-Clustering

minimize
P

i<j(xijwji + xjiwij) s.t. minimize
P

i<j(x
+
ijw

−
ji + x−

jiw
+
ij) s.t.

xik ≤ xij + xjk for all distinct i, j, k x−
ik ≤ x−

ij + x−
jk for all distinct i, j, k

xij + xji = 1 for all i �= j x+
ij + x−

ij = 1 for all i �= j

xij ≥ 0 for all i �= j x−
ij , x

+
ij ≥ 0 for all i �= j

FasLP-Pivot(V, x)
A recursive algorithm for rounding the LP for weighted
Fas-Tournament. Given an LP solution x = {xij}i,j∈V ,
returns an ordering on the vertices.

Set VR = ∅, VL = ∅.
Pick random pivot i ∈ V.

For all j ∈ V, j �= i:
With probability xji

Add j to VL.
Else (With remaining probability xij = 1 − xji)

Add j to VR.

Return order FasLP-Pivot(VL, x),i,FasLP-Pivot(VR, x)
(concatenation of left recursion, i, and right recursion)

CCLP-Pivot(V, x+, x−)
A recursive algorithm for rounding the LP for weighted
Correlation-Clustering. Given an LP solution
x+ = {x+

ij}i<j , x− = {x−
ij}i<j , returns a clustering of

the vertices.

Set Ci = ∅, V ′ = ∅.
Pick random pivot i ∈ V.

For all j ∈ V, j �= i :
With probability x+

ij

Add j to Ci.
Else (With remaining probability x−

ij = 1 − x+
ij)

Add j to V ′.

Return clustering Ci,CCLP-Pivot(V ′, x+, x−).

Figure 1: Standard LP relaxations and their corresponding rounding algorithms.

So FLP = FPIV
LP . We have the following lemma, the proof

of which can be found in [1]:

Lemma 13. If the weight system satisfies the probability
constraints (resp. probability constraints and triangle in-
equality constraints), then for any t ∈ T ,

y(t) ≤ τ
X

{i,j}⊆t

(pt
ij + pt

ji)c
∗
ij ,

where τ = 5/2 (resp. τ = 2).
Therefore, in this case, BPIV

LP ≤ τBLP .

Although this just gives yet another 2 approximation al-
gorithm for the rank aggregation problem, we can do better
there. We couple FasLP-Piv with Pick-A-Perm. The ex-
pected value of the Pick-A-Perm algorithm is

E[CPAP ] =
X
i<j

zij ,

where zij = 2wij(1−wij). We rearrange this sum as follows:

E[CPAP ] = BPAP
LP + FPAP

LP ,

where

BPAP
LP =

X
t

pt

X
{i,j}⊆t

(pt
ij + pt

ji)zij

FPAP
LP =

X
i<j

0
@1 −

X
t:{i,j}⊆t

pt(pt
ij + pt

ji)

1
A zij .

It is easy to see that FPAP
LP ≤ 2FLP (this is because zij ≤

2c∗
ij , and

P
t:i,j∈t pt(pt

ij + pt
ji) ≤ 1). We have the following

lemma, (proof in [1]):

Lemma 14. For all t = {i, j, k},
2
3
y(t) +

1
3

X
{i,j}⊆t

(pt
ij + pt

ji)zij ≤ 4
3

X
{i,j}⊆t

(pt
ij + pt

ji)c
∗
ij .

As a consequence, 2
3B

PIV
LP + 1

3B
PAP
LP ≤ 4

3BLP .

Clearly we have 2
3F

PIV
LP + 1

3F
PAP
LP ≤ 4

3FLP , and we con-
clude that the minimum between FasLP-Pivot and Pick-
A-Perm has an expected approximation ratio of at most 4

3
with respect to the LP cost.
We now consider the analysis of CCLP-Pivot on Corre-

lation-Clustering and Consensus-Clustering. Define
c∗
ij = x+

ijw
−
ij +x−

ijw
+
ij (the LP contribution as well as the ex-

pected charge of the safe pairs, which are defined as above).
For a triplet t = (i, j, k), let Bt

{i}j denote the event that
i, j was dangerously charged to t, because k is the pivot, i
is taken in k’s cluster and j is placed aside (the charge is
w+

ij). The probability of Bt
{i}j conditioned on At is pt

{i}j =
1
3x

+
kix

−
kj . Let Bt

{ij} denote the event that i, j was danger-
ously charged to t, because k is the pivot, and both i and j
are taken in k’s cluster (the charge is w−

ij). The probability
of Bt

{ij} conditioned on At is pt
{ij} = 1

3x
+
kix

+
kj .

Define y(t) =
P

{i,j}⊆t(p
t
{i}j + pt

{j}i)w
+
ij + pt

{ij}w
−
ij .

For all i �= j,
P

t:{i,j}⊆t pt(pt
{i}j + pt

{j}i + pt
{ij}) ≤ 1 (dis-

jointness of events). As before, we decompose E[CPIV
LP ] =

BPIV
LP + FPIV

LP , CLP = FLP +BLP , where

691



BPIV
LP =

X
t

pty(t)

FPIV
LP =

X
i<j

0
@1 −

X
t:{i,j}⊆t

pt(pt
{i}j + pt

{j}i + pt
{ij})

1
A c∗

ij .

BLP =
X

t

pt

X
{i,j}⊆t

(pt
{i}j + pt

{j}i + pt
{ij})c

∗
ij

FLP =
X
i<j

0
@1 −

X
t:{i,j}⊆t

pt(pt
{i}j + pt

{j}i + pt
{ij})

1
A c∗

ij .

Lemma 15. If the weight system satisfies the probability
constraints (resp. probability constraints and triangle in-
equality constraints), then for any t ∈ T ,

y(t) ≤ τ
X

{i,j}⊆t

(pt
{i}j + pt

{j}i + pt
{ji})c

∗
ij ,

where τ = 5/2 (resp. τ = 2).

As a result, we get a 5/2 approximation for the probability
constraints case, and a 2 approximation for the probability
and triangle inequality constraints case.
For Consensus clustering: Let CPAC

LP denote the value of
Pick-A-Cluster. So E[CPAC

LP ] = BPAC
LP + FPAC

LP , where

BPAC
LP =

X
t

pt

X
{i,j}⊆t

(pt
{i}j + pt

{j}i + pt
{ij})zij

FPAC
LP =

X
i<j

0
@1 −

X
t:{i,j}⊆t

pt(pt
{i}j + pt

{j}i + pt
{ij})

1
A zij ≥ 0.

zij = 2w+
ijw

−
ij

Lemma 16. For all t = {i, j, k},
2
3
y(t) +

1
3

X
{i,j}⊆t

(pt
{i}j + pt

{j}i + pt
{ij})zij

≤ 4
3

X
{i,j}⊆t

(pt
{i}j + pt

{j}i + pt
{ij})c

∗
ij .

Therefore, we get a 4/3 approximation algorithm for con-
sensus clustering. The proofs of Lemmas 15 and 16 can be
found in [1]. This completes the proof of Theorem 12.

8. NP-HARDNESS OF FEEDBACK ARC SET
ON TOURNAMENTS

All the problems referred to in Table 1 in Section 1.2 were
previously known to be NP-hard except for Fas-Tourna-
ment. In this section we show:

Theorem 17. Unless NP⊆BPP, Fas-Tournament has
no polynomial time algorithm.

Proof. We reduce to Fas-Tournament from Fas-Di-
Graph, which is the problem of finding a minimum feedback
arc set in a general directed graph. Fas-DiGraph is NP-
hard [22] (in fact, it is MAX-SNP-hard, see [21, 25, 26]).
Let G = (V,A) (with |V | = n) be an instance of Fas-

Digraph. Suppose we could add a set of edges AR to G
such that (V,A ∪ AR) is a tournament, and such that ex-
actly half of AR are backward in any ordering π of V . Then

by solving Fas-Tournament we would be able to recover
the feedback arc set of G. This is generally impossible. How-
ever, if we add the edges AR randomly (i.e. for every i, j
such the neither (i, j) nor (j, i) are in A add (i, j) or (j, i)
to AR with equal probability) then for any π the expected
number of backward edges is half |R|. The variance makes
this approach fail. By blowing up G and using a concentra-
tion property of the random variable counting the number
of backward edges in AR, we can use this construction (see
similar random digraph constructions in [25, 26]).
We pick an integer k = poly(n) (chosen later). The blow-

up digraph Gk = (V k, Ak) is defined as follows:

V k =
[

v∈V

{v1, . . . , vk}

Ak = {(ui, vj)|(u, v) ∈ A, i, j ∈ {1, . . . , k}} .

We observe that the minimum feedback arc set of Gk is
exactly k2 times the minimum feedback arc set of G. Indeed,
it suffices to consider only rankings π on V k that rank the
vertices v1, . . . , vk as one block for all v ∈ V (as explained
in [2], if vi <π vj are not adjacent in the ranking, then
either moving vi immediately to the left of vj or moving
vj immediately to the right of vi will result in a ranking
inducing no more feedback edges than π).
Now we turn Gk into a tournament T k = {V k, Ak ∪ Ak

R}
using the construction defined above. For a ranking π of V k,
let fR(π) denote the number of feedback edges in Ak

R with
respect to π. Denote by µ the expected value of fR(π), which
is the same for all π, and can be efficiently computed. We
claim that for k = poly(n), with probability at least 2/3,
all rankings π satisfy |fR(π) − µ| = O((nk)3/2

p
log(nk)).

This would imply, using the above observation, that for big
enough k = poly(n) the size of the minimum feedback arc
set of T k can be used to efficiently recover the size of the
minimum feedback arc set of G, because (nk)3/2

p
log(nk) =

o(k2). To prove the claim, for any fixed ranking π, set a
random indicator variable Xπ

wz for every non-edge {w, z}
of Gk which equals 1 iff the edge between w and z in Ak

R

is backward w.r.t. π. So fR(π) =
P

Xπ
wz . A simple ap-

plication of Chernoff bounds [3] and union bound (over all
possible (nk)! rankings) completes the proof of the claim. It
follows that unless Fas-Digraph ∈ BPP , we cannot solve
Fas-Tournament in polynomial time.

We wish to thank Noga Alon for ideas significantly simpli-
fying the proof [2]. Our initial hardness result was via max-
SNP hardness of Fas-DiGraph, and Noga Alon pointed out
that the same idea also works with the weaker NP-hardness.

9. OPEN PROBLEMS AND FUTURE WORK
We propose the following directions of research.

• Fas-Pivot can be thought of as a “quicksort” heuristic
for Fas-Tournament. Can we use other heuristics,
such as mergesort?

• Can Fas-Pivot and CC-Pivot and their LP rounding
analogues be derandomized?

• Is Rank-Aggregation NP-Hard for 3 permutations
[14, 15]?

• Is Consensus-Clustering NP-Hard for a constant
number of clusters [31, 18]?
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• Can we approximate weighted Correlation-Cluste-
ring with triangle inequalities, but no probability con-
straints?

10. ACKNOWLEDGEMENTS
We would like to thank Ravi Kumar and D. Sivakumar

for several discussions on these problems. Thanks also to
Shuchi Chawla and Tony Wirth for extensive discussions
on consensus clustering, to Aristides Gionis for sending us a
preprint of their paper [20], and to Noga Alon for discussions
on the hardness result.

11. REFERENCES
[1] N. Ailon, M. Charikar, and A. Newman. Proofs of

conjectures in ’aggregating inconsistent information:
Ranking and clustering’. Technical Report TR-719-05,
Princeton University, 2005.

[2] N. Alon. Ranking tournaments (draft). Personal
communication, 2004.

[3] N. Alon and J. H. Spencer. The Probabilistic Method.
Wiley, New York, 1992.

[4] S. Arora, A. Frieze, and H. Kaplan. A new rounding
procedure for the assignment problem with
applications to dense graph arrangement problems. In
Proceedings of the 37th Annual Symposium on the
Foundations of Computer Science (FOCS), pages
24–33, Burlington, VT, 1996.

[5] J. Bang-Jensen and C. Thomassen. A polynomial
algorithm for the 2-path problem in semicomplete
graphs. SIAM Journal of Discrete Mathematics,
5(3):366–376, 1992.

[6] N. Bansal, A. Blum, and S. Chawla. Correlation
clustering. Machine Learning Journal (Special Issue
on Theoretical Advances in Data Clustering),
56(1–3):89–113, 2004. Extended abstract appeared in
FOCS 2002, pages 238–247.

[7] J. Bartholdi, C. A. Tovey, and M. Trick. Voting
schemes for which it can be difficult to tell who won
the election. Social Choice and Welfare, 6(2):157–165,
1989.
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[11] M.-J. Condorcet. Éssai sur l’application de l’analyse à
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