
Lecture 18

Lattices and the Shortest Vector Problem

December 3, 2004
Lecturer: Kamal Jain

Notes: Chris Ré

18.1 Overview

In this lecture, we will show first that every lattice has a basis that can be found in a polynomially amount
of time from the original vector description. This allows us to assume that we are given a basis of a lattice
as input. Then we will tackle a problem in lattices, the shortest vector problem.

18.2 Finding A Basis

18.2.1 Prelimiaries

First we state some easy lemmas and give some intuition for the theoreom. A lattice of vectors v1 . . . vm

will be denoted {vi}m for convenience.

Lemma 18.1. Two lattices {vi}n and {uj}m are the same ⇔ each vi can be written as an integer combina-
tion of the {uj}m and similarily each uj can be written as a combination of the {vi}n .

Lemma 18.2. Greatest common divisor of a and b (gcd(a,b)) (w.log) a < b, is the same as gcd(a,b-a).

Proof. Let d = gcd(a, b), notice d|a and d|b − a so it is a divisor. If there were a divisor greater of a, b − a

then it would be a divisor of b − a + a = b, a contradiction.

This lemma immediately gives euclid’s algorithm for computing the gcd. This algorithm will be the
intuition for much of this lecture.

Lemma 18.3. gcd(a1, . . . , ai, . . . , aj . . . , am) = gcd(a1, . . . , ai, . . . , aj − ai, . . . , am)

Proof. same argument

Lemma 18.4. if gcd({ai}) = d → ∃xi

∑

xiai = d.

sketch. Just think of euclid’s algorithm, when it terminates you get d = ax+y. Walk backward through the
execution of the algorithm, you will be able to write the coefficients of the original terms by subsitution.

1

18.2.2 Lattice Basis Theorem

Theorem 18.5. Let L be a lattice {ui}m. In polynomial time L can be written as {vj}n where the vj are
linearly independent.

Remark. Notice this is a generalization of finding gcds of lists of numbers.

Proof. We may assume {ui}m are linearly dependent, because otherwise we are done. By definition this
means ∃ci

∑

civi = 0 such that not all ci = 0.
Notice these ci are in Q because all numbers involved are rational. The cis are also of small (polynomial)

size by a cramer’s rule argument. We can set them up to form a matrix equation V c = 0 and solve for c.
We now note some simplifying conditions. We can take gcd({ci}) = 1 because we can divide out any

gcd from all the terms.
Each ci can be taken ≥ 0. This is because we are dealing with an integer span and can swap the sign of

vectors. This changes any negative ci to positive.
Notice that if any ci = 1, we are done. This because

∑

j 6=i cj(−vj) = vi. We can just drop vi from the
list, since it is redundant. However there may be no such vector so that there is some ci = 1. Consider for
example (3, 5).

We use our fact about gcds and try to reduce some ci to 1. Let 0 < ci ≤ cj . ci, cj exist because there
is a non-trivial combination, this gives us that one such number exists. Also it is the case that their sum is
equal to 0, which means there must be at least one other non-zero coefficent.

We now perform the following substitution.

civi + · · · + cjvj · · · → ci(vi + vj) + · · · + (cj − ci)vj . . .

Notice that we are decreasing the sum of the coefficient sizes and since they are integers we will ter-
minate by well ordering. Like euclid we need to be careful to terminate in polynomial time. Notice, in an
analgous way to euclid’s algorithm we can take modulus of the smallest vector. This is sufficient but the
proof is omitted.

Also notice that we have not changed the lattice by this substitution. Only one vector changed: v i =
(vi + vj) + (−1)vj . This means that the span is still as large because we can recover vi and we have not
enlarged it because (vi + vj) was in the span of the original.

Remark. It is crucial that we take the basis vectors to be rational. For example {1,
√

2} is dense.

We will know assume that all lattices are described by their basis.

18.3 Shortest Vector Problem

Given a lattice with basis {vi}n, find the shortest non-zero vector with respect to the l2 norm. Figure 18.1(a)
shows why this is non-trivial, we could be given a very ’long’ bases.

Lemma 18.6. Suppose L has two different bases {ui}n and {vj}n then |det({ui}n)| = |det({ui}n)|

Remark. We can take L to be in Rn without loss, since that is the dimension of the lattice.

Definition 18.1. det({ui}n) = det

u11 u21 . . .

u12 u22 . . .

.

2

(a) A Lattice with two different bases (b) Reduction of angles between lattice vectors

Figure 18.1: Angles and Basis

Proof. Written as row vectors, we know that by our earlier lemma that we can write each basis in terms of

the other concretely.

u1

u2

. . .

un

= M1

v1

v2

. . .

vn

and

v1

v2

. . .

vn

= M2

u1

u2

. . .

un

Substuiting we can write:

u1

u2

. . .

un

= M1M2

u1

u2

. . .

un

Therefore, det(M1)det(M2) = 1 and these

matricies are over the integers, so this means their determinant is as well and det(M1) = det(M2) = ±1.
This proves the claim.

18.3.1 The method of Gauss for dimension 2

Now we are going to start with a method of Gauss to compute the shortest vector in R2. This will give the
intuition for the method which works in higher dimensions. The algorithm looks very similiar to euclid’s
algorithm but is not a generalization.

Some of the intuition comes from the fact that |det(v1 . . . vn)| is the volume of the parallelpiped you
get when you draw them. Our goal is to shrink the angle between the two vectors θ in order to get them
perpindicular. As we reduce we get |v1||v2|sinθv = |u1||u2|sinθu as shown in figure 18.1(b). In an
orthogonal basis we can simply choose the smallest vector in the basis.

Our transformation at each stage is analagous to euclid: we take two vectors u, v → u, u− v and repeat.
In two dimensions our algorithm looks like following.

while (|v2| > |v2 − v1|) or (|v2| > |v2 + v1|) do
v2 := min(|v2 − v1|, |v2 + v1|)
if |v2| < |v1| then swap(v1, v2)

done

The important thing to verify is that the lattice does not change with the new vector. This is because we
can recover the old v2 by the inverse of the vector we chose in the min. Also we not that this is a vector in

3

the old lattice since we have chosen the weights.
This section was just for intuition. We have not shown that this is poly-time or exact. These are proofs

are done by case analaysis and are not provided.

18.3.2 An approximation algorithm

In higher dimensions, we will use an approximation algorithm so that we can prove a polynomial running
time. We will begin in dimension 2 to get most of the key ideas. Also we will be using the l2 norm which
has the property that its distances are preserved under rotation of bases.

Given {v1, v2} we write them in the following normal form.
[

v11 0
v21 v22

]

For convenience of notation,

we will talk about the vector ~v22 = (0, v22) and the vector ~v21 = (v21, 0). Note the determinant of this
matrix is v11 ∗ v22. This also proves our parallelpiped result. It only takes poly time to get this form because
it requires multiplying by a rotation matrix. Both the derivation and the multiplication are polytime.

Definition 18.2. We say a basis is weakly reduced if we can write it as
[

v11 0
µ21v11 v22

]

with |µ21| < 1

2
.

The conditions for the exact algorithm are

1. the basis is weakly reduced

2. ||v11|| ≤ || ~v21 + ~v22||

We will relax the latter condition for our approximation.

1. the basis is weakly reduced

2. ||v11|| ≤ 2√
3
|| ~v21 + ~v22||

We must now show that the vector we find by this process is almost shortest and the resulting algorithm
runs in poly time.

Lemma 18.7. Algorithm produces a basis such that ||v11|| ≤
√

2 min{||v11||, ||v22||}

Proof.

||v11||2 ≤ 4

3
|| ~v21 + ~v22||2

=
4

3
(||v21||2 + ||v22||2) (perpendicular)

=
4

3
(|µ2

21|||v11||2 + ||v22||2) ⇒

2

3
||v11||2 ≤ 4

3
||v22||2

⇒ ||v11||2 ≤ 2||v22||2

This shows it is a
√

2 approximation.

Lemma 18.8. The vector found by this procedure v11 has ||v11|| ≤
√

2||shortest vector||.

Proof. The shortest vector must be representable in the basis. Let it equal m1v1 + m2v2.

4

case 1: m2 = 0 This means it’s only shortest when m1 = ±1 i.e. is equal to ||v1||.

case 2: m2 6= 0 This means |m2| ≥ 1. Evaluating its length:

||shortest vector|| = ||m1
~v11 + m2(~v21 + ~v22)||

= ||m1v11 + m2µ21v11 + m2v22||
Notice that the underlined portions are perpendicular. We can conlcude ||SV ||2 ≥ ||m2v22||2 ⇒ ||SV ||2 ≥
||v22||2 ⇒

√
2||SV || ≥ ||v11||, by previous lemma.

Remark. Can choose other factors ∈ (1,
√

3

2
).

Now we must show it is polytime. To do so we are going to define a potential function, θ = ||v11|| at each
step of the iteration. ||v11|| is a non-zero integer vector ⇒≥ 1. At each swap, we get that |v11| > 2√

3
|v2| so

it is cutdown by
√

3

2
at each interval therefore it executes in log√3

2

(v11)

Now we have the basic tools to generalize this algorithm to higher dimensions.

5

