
Lecture 10

Euclidean TSP
Tree decompositions

November 5, 2004
Lecturer: Kamal Jain
Notes: Ioannis Giotis

1.1 Euclidean TSP continued

In the last lecture we considered a bounding box of the pointsL × L for L = 4n2 and the resulting grid
formed by unit squares. We also showed that at a small cost to the optimum we can move all points to the
centers of their respective square and that the tour is not self intersecting using the triangle inequality.

W.l.o.g we assume thatn = 2k. We now recursively divide the bounding box into 4 squares. The

recursion haslog L levels and at the last level are the unit squares. On each square we placem = O
(

log n
ε

)
portalson each edge placed equally distanced (portals on corner points need to be moved by a small amount).
We’re allowed to enter or exit the square only by its portals and we are going to move a tour’s entries and
exits to pass through the nearest portals.

Assumption.There exists a TSP tour with cost(1 + O(ε))OPT , which enters and exits into squares only
through portal points.

Lemma 1.1. W.l.o.g. we can assume a tour passes through a given portal at most twice.

Proof. Suppose otherwise. For any subset of 3 edgese1, e2, e3 passing though the same portal, if we remove
edgese1, e2 on the inside of the square, if the graph is still connected we can get a tour of lesser cost by
adding an edge connectinge1, e2 endpoints. Otherwise, if the graph is not connected, we reset edgee1

and remove edgee3. The resulting graph is connected and we get a tour of lesser cost by adding an edge
connectinge2, e3 endpoints.

Since each portal has0, 1 or 2 edges, there are34m ∼ nO(1/ε) possible configurations for the portals.
We only need the ones that the sum of entries and exits is even.

Consider the following procedure. We select a subset2r ≤ 4m of the portals and try to pair the portals.
However, since the tour is not self-intersecting the only possibilities for say lined up portalsa, b, c, d are
1) (a − d), (b − c) or 2) (a − b), (c − d). But these pairings correspond to balanced arrangements of2r
parentheses which is therth Catalan number22r ∼ nO(1/ε), therefore we only have a polynomial number
of problems.

1

The dynamic programming approach is, given the entry and exit points, to divide the square in 4 and
solve the problem until the squares are small enough to apply brute force. At each level we are going through
a polynomial number of problems.

Finally, there exist some bad cases where most of the points are very close to a separating line (defining
squares) but are alternatively on different sides of the line. To deal with this situation we move the separating
lines randomly by a small amount.

1.2 Tree decompositions

In the problem of maximum independent set, we are given a graphG with weights on verticeswv. Our goal
is to find an independent setS such that

∑
v∈S wv is maximized. IfG is a tree then the problem can be

solved with dynamic programming as follows.

Consider “hanging” the graph from an arbitrary vertex. For each vertexv, letTv be the subtree rooted at
v andfv the cost of a maximum independent set ofTv which usesv, andgv the cost of a m.i.s ofTv which
doesn’t usev. Clearly these values for leaves are equal to the weights of the vertices or 0 respectively. Now,
for each vertexv which has childrenui these functions are computable by

f(v) = wv +
∑

i

gui

g(v) =
∑

i

max(gui , fui)

This problem can also be solved in polynomial time in tree like graphs. These graphs have a tree
subgraph as a skeleton and some “flesh” surrounding each tree edge. To define this formally, we define the
tree decomposition of a graphG as

• T is a tree subgraph ofG. V (T) is the vertex set ofT .

• ∀v ∈ V (T), assign a subgraphHv ⊆ G, such that
⋃

Hv = G.

• ∀u, v, w ∈ V (T) s.t.v is on a unique pathu− w thenV (Hu) ∩ V (Hw) ⊆ V (Hv).

The tree width is defined as the size ofmax|Hu| − 1.

Lemma 1.2. G has tree width 1 iffG is a forest. Alternatively, a forest doesn’t haveK3 as a minor.

We say thatG hasH as a minor if we can perform the following procedure.

1. Start withG.

2. Remove an edge fromG.

3. Pick two adjacent vertices and contract them.

4. GetH by repeating previous steps as necessary.

2

Lemma 1.3. G has tree width2 iff G is a series-parallel graph. Alternatively,G has tree width 2 iffG
doesn’t haveK4 as a minor.

Unfortunately,G has tree width 3 iffG doesn’t haveK5 as minor, is not true. To see this, consider the
n× n grid. Another interesting lemma is

Lemma 1.4. A graph is planar iff it doesn’t haveK5 or K3,3 as a minor.

Continued on the next lecture...

3

