
Lecture 1

CS522: Advanced Algorithms

October 18, 2004
Lecturer: Kamal Jain

Notes: Ethan Phelps-Goodman

1.1 The Min Cost Steiner Forest Problem

In the last lecture we saw primal-dual schemas for weighted vertex cover and
facility location. In this lecture we will look at a slightly more complicated
primal-dual schema algorithm.

Problem 1 (Steiner Forest). We are given an undirected graph G =
(V,E) with edge weights ce ≥ 0. We are also given a function r : V × V →
{0, 1} where

r(u, v) =
{

1 if any feasible solution must contain a path between u and v
0 otherwise

Our task is to come up with a minimum weight subgraph H of G that
satisfies the connectivity constraints given by r.

Note that this is a generalization of the Steiner tree problem where only
certain subsets of the Steiner vertices are required to be connected.

Lemma 1. The min cost Steiner tree is a forest (ie. it contains no cycles.)

Proof. Were there a cycle we could remove an edge along the cycle and
not break any connectivity. This would be a feasible solution of lower cost,
contradicting our assumption of optimality.

1.2 Formulation as a linear program

First a bit of notation. Let us define a function f on subsets of V . f will be
1 for those sets S that define a cut that separates two vertices that must be

1

LECTURE 1. CS522: ADVANCED ALGORITHMS 2

in the same component.

f(S) =
{

1 if ∃u ∈ S, v /∈ S s.t. r(u, v) = 1
0 otherwise

We use the notation δG(S) to mean the set of edges that cross the cut
given by S.

δG(S) = {e | e = (u, v) is an edge in graph G s.t. u ∈ S, v /∈ S or visa versa }

These edges are known as cross edges.
Note that if there is some set S with f(S) = 1 and |δH(S)| = 0 then H

is not a feasible solution. Conversely, if all subsets S of V with f(S) = 1
satisfy |δH(S)| ≥ 1, then H is a feasible solution. We will use this fact to
construct the linear program.

The primal will have a variable xe for each edge. We will consider xe = 1
to mean e ∈ H, and xe = 0 to mean e /∈ H. Stated as a linear program, the
Steiner forest problem is:

minimize
∑
e∈E

cexe

subject to constraints

∀S s.t. f(S) = 1
∑

e∈δG(S)

xe ≥ 1

xe ≥ 0

The dual of this program is:

maximize
∑

S:f(S)=1

yS

subject to

∀e
∑

S|e∈δG(S)

yS ≤ ce

yS ≥ 0

LECTURE 1. CS522: ADVANCED ALGORITHMS 3

1.3 The iterative algorithm

As in the facility location algorithm from last lecture, we give a combinato-
rial algorithm rather than solving the LP directly. Our approach will be to
raise a set of dual variables until one of the constraints goes tight. We then
pick the corresponding primal variable to be an edge in the solution. Once
we obtain a feasible solution we go through a pruning phase to improve the
quality of the solution.

We refer to a subset of vertices as a component, labeled Ci. A component
is said to be active if f(Ci) = 1. Our initial set of components will be sets
of single vertices C1 . . . Cn where each Ci contains the ith vertex of G. Each
iteration of the algorithm raises all active components simultaneously until
one or more goes tight. We then pick one of the now tight constraints
and include the corresponding edge in H. This new edge will connect two
components, which become merged into one. The algorithm terminates
when there are no active components left.

Lemma 2. At any point in the algorithm, H is a forest.

Proof. Once two components are joined the edges inside the merged com-
ponent won’t be considered further. Any future edges will connect this
component to outside components, so a cycle is never created.

Lemma 3. The algorithm stops at the first feasible solution. In other words,
H is a feasible solution if and only if there are no active components.

Proof. ?

The algorithm finishes with a pruning phase, which will be important
later in the analysis. The pruning phase simply checks for every edge e ∈ H
if removing e maintains a feasible solution. If H−e is feasible, e is removed.

1.4 Proving the approximation ratio

In this section we will prove that the primal-dual algorithm gives a 2-
approximation for the Steiner forest problem. To start, note that the primal
slackness condition

xe > 0 =⇒
∑

S:e∈δG(S)

yS = ce

LECTURE 1. CS522: ADVANCED ALGORITHMS 4

is true since we set xe = 1 precisely when the dual goes tight. The dual
slackness condition

yS > 0 =⇒
∑

e∈δG(S)

xe = 1

is not true in general. (If it were we’d have an optimal solution.) To prove
an α approximation ratio we want to show

yS > 0 =⇒
∑

e∈δG(S)

xe ≤ α · 1.

Unfortunately this is not true for any constant α. It is enough to show
however that the bound is true on average. In particular, we will show

∑
S

yS

∑
e∈δ(S)

xe

 ≤
∑
S

2yS (1.1)

At the start of the algorithm this is trivially true, since all yS = 0 for all
S. Now say that over some arbitrary interval the algorithm has raised the
active components by ∆. Then the right hand side of (1.1) increases by

2∆ · # active components. (1.2)

For the left hand side of (1.1), we will need the graph obtained by com-
pressing each active component into a single node. Call this graph HP .
Then degHP

(S) = δH(S). Using this notation, over an interval ∆, the left
hand side adds ∑

Si:Si is an active component

∆ · degHP
(Si) (1.3)

We need to show that (1.3) is always less than (1.2). Note that for any
forest we have ∑

v∈V

deg(v) < 2 · |V | (1.4)

This follows from the fact that the sum of all the degrees is precisely twice
the number of edges, and the number of edges of a forest is always less than
the number of nodes. In our forest HP , we can split this into∑
Si active

deg(Si)+
∑

Si inactive

deg(Si) < 2 ·# active comp.+2 ·# inactive comp.

(1.5)

LECTURE 1. CS522: ADVANCED ALGORITHMS 5

Claim 1. An inactive component cannot be a leaf in HP .

Proof. Assume that C is an inactive leaf connected to the tree by edge
e. Since C is inactive, it doesn’t need a path from anything inside the
component to the rest of the graph. Therefore in the pruning phase, H − e
will still be a feasible solution, so e will be removed, and C will no longer
be a leaf.

This implies the average degree of inactive nodes is at least 2. Taken
together with (1.5) we get the desired bound∑

Siactive

deg(Si) < 2 ·# active comp. (1.6)

This shows that equation (1.1) always holds, and so our we have proved
that the algorithm is a 2-approximation.

