
Lecture 1

CS522: Advanced Algorithms

October 4, 2004
Lecturer: Kamal Jain

Notes: Chris Re

1.1 Plan for the week

Figure 1.1: Plan for the week

The underlined tools, weak duality theorem and complimentary slackness, are most frequently used in
CS. Strong duality is not often used in CS.

Remark. A nice reference for this material are Schrijver’s Course notes [?]. The title is A Course in Combi-
natorial Optimization. It is available on the web.
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1.2 Convex Sets

Definition 1.1. A Set S ⊂ of R
n is convex if and only if ∀x, y ∈ S the line connecting them is also in S.

That is ∀λ ∈ [0, 1] λx + (1 − λ)y ∈ S.

Figure 1.2: Examples of Convex and Non-Convex Spaces

In this course we will be assuming that all such convex sets are closed with respsect to the usual topology
on R

n.
Convex sets have nice properties. One such property for linear functions on convex sets is that every

local max (min) is also a true max (min). This property does not hold in the non-convex case.
The first exercise of the lecture is to show the seperation thereom. This theorem states that given a

convex set X and a point z not inside this convex set, there is a hyperplane such that z is on one side and X is
on the other. Intuitively and pictorally this theorem is obvious, but making it formal will require some work.

Theorem 1.1 (Separation Theorem). Let X convex ⊂ Rn and z /∈ X . There exist weights ai such that
∀x ∈ X

∑n
i aixi ≤ δ and

∑n
i aizi ≥ δ hold.

Figure 1.3: Examples of Separation

Proof. Take x ∈ S such that ||x − z|| is minimized. Notice such an x exists because the set is closed and
therefore compact and we are minimizing a continuous function. We claim it is unique. For contradiction
assume that there are x1, x2 such that |z − x1| = |z − x2| = min. Now consider their average, y = x1+x2

2
.

It is in the set X, by convexity and the fact that it lies on the line between x1, x2. This induces a triangle
which is bisected by the line from y to z. It is clear that this vector is strictly shorter than the other two. This
is a contradiction to their assumed minimality.
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Now we have a unique minimal point x. Now draw a ball with radius δ = |x − z|. Consider the tangent
to this ball at the point x. We claim that this tangent hyperplane touches the convex set only at this one point.
Moreover all of X is on one side of it. Suppose not, let y be the point that intersects the tangent hyperplane.
Now draw the line xy. Notice that it must intersect the ball we have drawn, by convexity this spot on the
ball is in the convex set, giving us a second minimal distance point, a contradiction to the above. Now we
simply translate the hyperplane δ

2
in the z − x direction, this is our separating hyperplane.

Definition 1.2. A Half space is given by the equation
∑

j Cjxj ≤ δ.

Any convex set S can be written as the intersection over some (possibly infinite - even uncountably
many) family of half-spaces. Notice the intersection of these sets is clearly convex since each halfspace is
convex and therefore the line connecting any two points in their intersection is as well. Thus any collection of
halfspaces is a convex set. Also, the above seperation theorem implies that we can continue using seperating
hyperplanes (and then the inequality) to define the convex set, simply evaluate over all points not in the set.

Definition 1.3. A Polyhedron is a convex set which is the intersection of finitely many half spaces.

Remark. What we have above is a CoNP certificate of non-membership in the set of convex spaces. What
we now want is an NP certificate for membership.

Definition 1.4. Convex Hull of a Set S, which may or not may be convex, will be denoted conv(S). conv(S)
= {y|y =

∑k λixi and ∀i λi ≥ 0 and
∑

i λi = 1}. k is an abitrarily large constant.

Remark. An alternative definition is that conv(S) =
⋂

S’ is convex and S⊂S′ S′.

Our question is, how do we produce a certficate that a given element z is in a convex set S.

Theorem 1.2 (Carathéodory). For any z ∈ conv(S). z can be written as z =
∑k

i λixi. k ≤ n + 1 where
n is the dimension of the space.

Proof. let z =
∑k

i λixi, when k > n + 1. Write the series of vectors in R
n+1, x′

i = (1, xi). Notice by
hypothesis there are more than n+1 of them, this implies these new vectors are linearly dependent. Therefore
we can write

∑
µix

′
i = 0. We notice that

∑
µi = 0 because the first term is the 1 in each column. This also

implies that there exists atleast one µi > 0 and µj < 0 since they are not all zero. We use this difference
to cancel out one term. This decreases the number of vectors, decreasing k and allowing the induction
hypothesis to be used.

Definition 1.5. If S is finite, we call the hull of S a polytope

Our goal is the following theorem:

Theorem 1.3 (Mikowsky-Weyl). a polytope is a bounded polyhedron

Definition 1.6. Let v ∈ S where S is a convex set. v is a corner point if and only if it can not be written as
a combination of two other points.

Definition 1.7. Let Az be the matrix of constraints which are satisfied as equality.

Theorem 1.4. z is a corner pointer if and only if rank(AZ) = n
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Proof. Suppose z is a corner point but rank(Az) < n. We will write z as a combination of two other points
to show a contradiction. Since A is not of full rank, it has some non-trivial kernel. So we may write Azc = 0
with c 6= 0. We have a little bit of slack on the inequalities and there are finitely many, so we can find a δ so
that translation by that amount will not violate the constraints. Now we write c as the average of z + δc and
z − δc. By our definition of δ and c, we know that this satisfies the constraints. This is a contradiction to z
being a corner point.

For the other direction, assume rank(Az) = n but z = x+y
2

with x and y in the set. We must be able to
write it this way because it is not a corner point. We will show that Az is not injective, a contradiction to it
being of full rank. ∀rowi ∈ Az ai ∗ x ≤ bi = ai ∗ z and ai ∗ y ≤ bi ∗ z which implies ai ∗ (x − z) ≤ 0 and
ai∗(y−z) ≤ 0 but, we no from above that x+y = 2z so, x−z = −(y−z) that is Az(x−z) = Az(y−z) = 0
By linearity, Az(x) = Az(y) = Az(z), a contradiction to the assumed rank.

We desire the implication: Bounded polyhedron implies polytope. We show something stronger from
Schrijver’s notes [?].

Lemma 1.5. P a polyhedron with vertexes p1, ..., pt implies P = conv(p1, ..., pt).

Remark. As we saw in class, the main intuition is that we go to the boundaries of the polyhedron and
intersect in two points, x and y in the proof. We then use our induction hypothesis to write these as elements
of the hull. We can do this since the sides since they are of strictly smaller dimension equivalently more
constraints are satisfied. This is the condition rank(Az) > rank(Ax).

Proof. Since P is convex and each of the vertexes belong to P, conv(p1, ..., pt) ⊆ P . So we must show that
given z ∈ P then z ∈ conv(p1, ..., pt) We are going to use induction on n − rank(Az), n the number of
dimensions.

Base Case n − rank(Az) = 0, this implies from the above that z is a corner point. So it is one of the pi

and is in the hull.

Inductive Case n − rank(Az) > 0, this implies there is an element in the kernel of Az call it c.

Denote by µ0 := max{µ|z + µc ∈ P} and η0 := max{η|z + ηc ∈ P}. This number exist by compact-
ness of P. Let x = z + µ0c and y = z − η0c.

Notice now µ0 = min{ bi−aiz
aic

|ai is a row of Ai; aic > 0}. This is because µ0 is the largest µ such that
ai(z + µc) ≤ bi for each i = 1, ...,m. Written another way, µ ≤ bi−aiz

aic
for every i.

Let the minimium be attained by i0. So for i0 we have equality in the above minimum. This implies the
following two facts:

Azx = Azz + µ0Azc = Azz and ai0x = ai0(z + µ0c) = bi0 . So Ax contains all rows in Az and in par-
ticular ai0 . Azc = 0 while ai0c 6= 0. This implies rank(Ax) > rank(Az), So by our induction hypothesis x
is in conv(x1, ..., xt). Similarily, y belongs to conv(x1, ..., xt), therefore z belongs to conv(x1, ..., xt).

Theorem 1.6. A polytope is a bounded polyhedron
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sketch. Let P = conv(x1, . . . , xk) be a polytope. Induction takes care of the case when P is not the full
dimension of the space. This implies there is a ball B with radius r centered inside P, (for ease assume
centered at 0). Now define the set P ∗ = {y|xT y ≤ 1∀x ∈ P}. We claim P ∗ is a polyhedron. Write
P ∗ = {y|xT

i y ≤ 1∀i}. We can write x =
∑

i λxi because x is in the hull. Now this is a polyhedron and y
is in it because xT y =

∑
i λix

T
i y ≤

∑
λi = 1. The last inequality follows from the definition of P ∗ above.

Now we notice that P ∗ is in fact bounded, because for any y (not equal to 0) in P ∗ we can scale it inside
the ball. Thus we have there is some x = y r

||y|| so xT y ≤ 1 this implies that all of P ∗ is contained in the
ball B(0, 1

r
). This means P ∗ is a bounded polyhedron implies it is a polytope by previous thereom. We will

know show that P ∗∗ = P and this will complete the theorem.

1.3 Homework

Given an ordered list of points p1, ..., pk ∈ R
2. You may assume that P1 is the last element of the list. Give

algorithms for the following:

Question 1 Determine whether the boundary is not self-intersecting.

Question 2 Given a point x, is x contained in the polygon P defined by the above points.
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