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1.1 Introduction

Combinatorial Optimization is a broad field where roughly one tries to optimize an objective function subject
to certain constraints. For example, one might want to find the Minimum Spanning Tree of a graph, the
shortest path between two nodes in a graph or the Maximum matching in a bipartite graph. A related
question is checking if a given answer is indeed the optimal solution. For example given a Spanning Tree
one would like to check quickly (where quickly means polynomial time) if the tree is indeed the Minimum
Spanning Tree (MST). If the given tree is not the MST, then a certificate for this fact can be any cheaper
spanning tree. However, if the spanning tree is indeed the MST one can try to enumerate all the spanning
trees and show that the given tree is the cheapest. This, however is not efficient. Note that for problems
in NP ∩ coNP, the issue of finding a short certificate is easy. We next briefly mention a theorem (which
would be covered in a later lecture) which gives a way to check the optimality of a candidate solution for
the problem of Maximum flow.

1.1.1 Max Flow Min Cut theorem

In this problem we are given a graph, possibly directed, with each edge having a capacity and the objective is
to find the maximum flow in the graph. For example consider the graph in Figure 1.1. A candidate solution
is proposed in Figure 1.2 which is shown not to be the optimal by flow in Figure 1.3.

s t

Figure 1.1: The capacities of each edge is one. The source of the flow is denoted by s and the terminal by t

The problem of showing whether a given flow is optimal could be solved if there existed a number say F

such for any flow of value f , f ≤ F . The max-flow min-cut theorem states that F exists and it is the value
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Figure 1.2: A candidate max flow shown by the blue edges. Each blue edge has a flow of one.
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Figure 1.3: A counter example for the candidate max flow of Figure 1.2 shown by the red edges. Each red
edge has a flow of one.

of the min-cut of the graph. For example, in the graph of Figure 1.1, F = 3 and thus, the flow in Figure 1.3
is optimal.

1.2 Running Time

We now briefly look at how to measure the efficiency of an algorithm. For an input a1, a2, · · · , an, where
each ai is a rational number (not necessarily minimized), we can define the input length in two ways:

1. Number of bits required to represent the input, L =
∑n

i=1
log2 ai. In this measure we say that

an algorithm runs in polynomial time if and only if the number of steps of the algorithm is some
polynomial function of L.

2. The number of inputs, n. In this case a polynomial time algorithm has number of steps which is
polynomial in n.

In the first case the number of steps is essentially the total work done while in the second measure the
number of steps is the number of basic arithmetic operations1

1.3 Linear Programming

We will start with a common example of Food Planning. Figure 1.3 list the energy, fat and carb contents of
cookies (A), whole milk (B) and juice (C).

We would like to plan our food intake, that is, figure out the values of a, b and c, so that our energy
intake is atleast 1500 cal, the fat content is atmost 50% and the Carb content is atmost 100%. In other words

1Addition, subtraction and multiplication. Division is not a basic operation. Note that since we allow rational numbers to be not
necessarily minimized, one has to take care of the scenario when the number may become too big.
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A B C
Energy (in cal) 200 200 200
Fat (% d.v.) 20 20 0
Carb (% d.v.) 10 10 20

a b c

Figure 1.4: Various properties of foods A, B and C. Each of them are consumed in quantities a, b and c

respectively.

we need to find a feasible solution to the following LP:

200a + 200b + 200c ≥ 1500 (1.1)

−20a − 20b ≥ −50 (1.2)

−10a − 10b − 20c ≥ −100 (1.3)

It turns out that the LP given by (1.1)-(1.3) is infeasible. To see why this so, multiply (1.2) by 10 to get

−200a − 200b ≥ −500 (1.4)

From (1.1) and (1.4), we get c ≥ 5. This along with (1.3) implies a = b = 0, c = 5. This however does
not satisfy (1.1).

Now assume that B instead of being whole milk was skimmed milk, that is, the fat content was 0%.
Now we need to solve the following LP:

200a + 200b + 200c ≥ 1500 (1.5)

−20a ≥ −50 (1.6)

−10a − 10b − 20c ≥ −100 (1.7)

One can easily verify that a = c = 0, b = 10 is a valid solution for the LP of (1.5)-(1.7).

Thus, checking for the feasibility of an LP is easy: just check the constraints as we did for the LP of
(1.5)-(1.7). However, the method we used to check for the infeasibility of the LP of (1.1)-(1.3) was ad-hoc
and we would like to develop a theory for verifying the feasibility of an LP.

Going back to the LP of (1.1)-(1.3) if we multiplied the three inequalities by λ1, λ2 and λ3 respectively
and got an inequality where all the coefficients on the left hand side are atmost zero while the right hand side
is strictly positive, then we can prove that the LP is infeasible. In the whole milk example, λ1 = 1, λ2 =
9, λ3 = 10 works.

Thus, in general for an infeasible LP with n inequalities we need to show that n multipliers λ1, · · · , λn

exist (while for feasible LPs none exist). In the next section we discuss this theory in more detail.
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1.4 Fourier Motzkin Elimination Method

To check the feasibility of a system of linear equations, one can use Gaussian elimination and check if
any determinant of the resulting matrix is zero. However, Gaussian elimination does not work if instead of
equalities one is given inequalities of the following form:

∀i = 1, · · · , n

m
∑

j=1

aijxj ≥ bi (1.8)

To check the feasibility of the above systems of inequalities we look at the Fourier Motzkin elimination
method which is a generalization of the Gaussian elimination method and is based on the idea that one can
eliminate a variable say xj if it had coefficients of different signs in two inequalities. We now describe the
method in more detail. In the discussion that follows we assume w.l.o.g. that we want to eliminate x1.

Reorder the inequalities to obtain numbers k1 and k2 where 0 ≤ k1 ≤ k2 ≤ n such that the first k1

inequalities have positive coefficient for x1, the next k2 − k1 have negative coefficients for x1 and the rest
do not have x1 in them. We call these classes of inequalities as Category one, two and three inequalities
respectively. Thus, for any i1 ∈ {1, · · · , k1}:

x1 ≥
bi1

ai11

−

m
∑

j=2

ai1j

ai11

xj ; ai11 > 0 (1.9)

and for any i2 ∈ {k1 + 1, · · · , k2}:

x1 ≤
bi2

ai21

−

m
∑

j=2

ai2j

ai21

xj ; ai21 < 0 (1.10)

Thus, eliminating x1 using Category one and two inequalities we get the following LP:
m

∑

j=2

(
ai1j

ai11

−
ai2j

ai21

)xj ≥
bi1

ai11

−
bi2

ai21

; i1 = 1, · · · , k1; i2 = k1 + 1, · · · , k2

m
∑

j=2

aijxj ≥ bi ; i = k2 + 1 · · · , n (1.11)

We now have the following claim:

Claim 1. The LP of (1.8) is feasible if and only if the LP of (1.11) is feasible.

Proof. (⇒:) This direction is obvious.

(⇐:) Suppose we have a solution (x2, · · · , xm) for the LP of (1.11). It is easy to see that a feasible
solution to the LP of (1.8) is (x1, x2, · · · , xm) where x1 satisfies equations (1.9) and (1.10). We first look
at the boundary cases when there are no category one or two inequalities. If there are no category one (two)
inequalities, set x1 to −∞ (∞) and we are done. If both k1 and k2 − k1 are non-zero, set

x1 ∈



 min
i2=k1+1,··· ,k2





bi2

ai21

−

m
∑

j=2

ai2j

ai21

xj



 , max
i1=1,··· ,k2





bi1

ai11

−

m
∑

j=2

ai1j

ai11

xj
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This completes the proof.

Now we have the following procedure to decide whether the original LP of (1.8) is feasible or not: apply
the Fourier Motzkin elimination method m times to eliminate all the variables to get an LP with inequalities
not involving any variables. By Claim 1, if one of the final inequalities is infeasible (which would be of
the form a negative number is greater than a positive number) then the original system of inequalities is
infeasible otherwise it is not.

Example 1.1. Consider the following set of inequalities: x1 ≥ 2, −x1 ≥ −1. The Fourier Motzkin
elimination method gives 1 ≥ 2 which is an infeasible inequality.

Note that at each elimination step in the worst case the number of inequalities increases quadratically,
that is, in the worst case, the above “algorithm” takes time O(n2m

).

1.5 Farkas Lemma

In this section, we look at getting shorter certificates for proving infeasibility of a system of inequalities. To
this end, we present two lemmas.

Lemma 1.1. A system of inequalities a1
T
x ≥ b1,a2

T
x ≥ b2, · · · ,am

T
x ≥ bm has no solutions if and

only if there exist positive λ1, · · · , λm such that
∑m

i=1
λiai = 0 and

∑m
i=1

λibi = 1.

Proof. (⇐:) Multiply the ith inequality with the given λi and sum them up to get (
∑m

i=1
λiai)x ≥

∑m
i=1

λibi, which by the properties of λis is same as infeasible inequality 0 ≥ 1.

(⇒:) The Fourier Motzkin elimination process gives the required λ1, · · · , λm. As the given set of
inequalities is infeasible, repeated application of the Fourier Motzkin elimination process would finally give
an infeasible inequality. Note that this infeasible inequality is a just a linear combination of some subset of
the original inequalities. In particular we get λis such that

∑m
i=1

λiai = 0 and
∑m

i=1
λibi > 0. Scaling the

λis appropriately gives
∑m

i=1
λibi = 1. Finally note that from equations (1.11), these λis are positive which

completes the proof.

We now state the homogeneous version of Farkas Lemma:

Lemma 1.2. a1
T
x ≥ 0, · · · ,am

T
x ≥ 0 ⇒ c

T
x ≥ 0 if and only if there exist positive λ1, · · · , λm such

that
∑m

i=1
λiai = c.

Proof. (⇐:) In this case we have positive λis such that
∑m

i=1
λiai

T = c
T . Applying this fact to

∑m
i=1

λiai
T
x ≥

∑m
i=1

λi · 0, we have c
T
x ≥ 0 as desired.

(⇒:) In this case we have that the following infeasible system of inequalities a1
T
x ≥ 0, · · · ,am

T
x ≥

0, cT
x < 0. By suitably scaling x one can obtain an equivalent set of inequalities a1

T
x ≥ 0, · · · ,am

T
x ≥

0,−c
T
x ≥ 1. As this set is also infeasible, applying Lemma 1.1, we get positive λ1, · · · , λm+1 such that

∑m
i=1

λi · 0 + λm+1 · 1 = 1 and
∑m

i=1
λiai = λm+1c. The first relation gives λm+1 = 1 which simplifies

the second relation to
∑m

i=1
λiai = c as desired.

In the next lecture we will look at convexity and derive an alternate proof of Lemma 1.2 as well as the
non-homogeneous version of Farkas Lemma.
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