
CSE 521: Design and Analysis of Algorithms I Fall 2020

Background / Cheat Sheet

In this note I will discuss several background materials that we will discuss and exploit many times throughout
this course.

1 Randomized Algorithm

Expectation: For a random variable X with domain, the discrete set S,

E [X] =
!

s∈S

P [X = s] s.

Linearity of Expectation: For any two Random variables X,Y ,

E [X + Y ] = E [X] + E [Y ] .

Variance: The variance of a random variable X is defined as Var(X) = E
"
(X − E [X])2

#
. The following

identity always holds,
Var(X) = E

"
X2

#
− (E [X])2.

The standard deviation of X, σ(X) =
$
Var(X).

Mutual Independence A set of random variables X1, . . . , Xn are mutually independent if for any S ⊆
{1, . . . , n},

E

%
&

i∈S

Xi

'
=

&

i∈S

E [Xi] .

k-wise Independence For an integer k ≥ 2, a set of random variables X1, . . . , Xn is set to be k-wise
independent if for any set S ⊆ {1, . . . , n} of size k,

E

%
&

i∈S

Xi

'
=

&

i∈S

E [Xi] .

Sum of Variance: Let X1, . . . , Xn be pairwise independent random variables, then

Var(X1 + · · ·+Xn) = Var(X1) + · · ·+Var(Xn).

Markov’s Inequality Let X be a nonnegative random variable, then for any k ≥ 0,

P [X ≥ k] ≤ E [X]

k
.
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Chebyshev’s Inequality For any random variable X and any ε > 0,

P [|X − E [X] | > ε] ≤ Var(X)

ε2
.

So, equivalently,

P [|X − E [X] | > kσ(X)] ≤ 1

k2
.

Hoeffding’s Inequality Let X1, . . . , Xn be independent random variables where for all i, Xi ∈ [ai, bi].
Then, for any ε > 0,

P

%(((((

n!

i=1

Xi − E
n!

i=1

Xi

((((( > ε

'
≤ 2 exp

)
−2ε2*n

i=1(ai − bi)2

+

Multiplicative Chernoff Bound Let X1, . . . , Xn be independent Bernoulli random variables, i.e., for all
i, Xi ∈ {0, 1}, and let X = X1 + · · ·+Xn and µ = E [X]. Then, for any ε > 0,

P [X > (1 + ε)µ] ≤
)

eε

(1 + ε)1+ε

+µ

≤ e−
!2µ
2+! ,

and
P [X < (1− ε)µ] ≤ e−ε2µ/2

McDiarmid’s Inequality Let X1, . . . , Xn ∈ X be independent random variables. Let f : Xn → R. If for
all 1 ≤ i ≤ n and for all x1, . . . , xn and x̃i,

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x̃i, xi+1, . . . , xn)| ≤ ci,

then,

P [|f(X1, . . . , Xn)− Ef(X1, . . . , Xn)| > ε] ≤ 2 exp

)
− −2ε2*

i c
2
i

+
.

Concentration of Gaussians Let X1, . . . , Xn be independent standard normal random variables i.e., for
all i, Xi ∼ N (0, 1). Then, for any ε > 0,

P

%(((((

n!

i=1

X2
i − n

((((( > ε

'
≤ 2 exp

)
ε2

8

+

Gaussian Density Function The density function of a 1-dimensional normal random variable X ∼
N (µ,σ2) is as follows:

1√
2πσ2

e−(x−µ)2/2σ2

.

More generally, we say X1, . . . , Xn form a multivariate normal random variable when they have following
density function:

det(2πΣ)−1/2e−(x−µ)⊺Σ−1(x−µ)/2

where Σ is the covariance matrix of X1, . . . , Xn. In particular, for all i, j,

Σi,j = Cov(Xi, Xj) = E [Xi − E [Xi]]E [Xj − E [Xj ]] = E [XiXj ]− E [Xi]E [Xj ] .

As a special case, if X1, . . . , Xn are standard normals chosen independently then Σ is just the identity matrix.
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2 Spectral Algorithms

Determinant Let A ∈ Rn×n, the determinant of A can be written as follows:

det(A) =
!

σ

n&

i=1

Ai,σ(i) sgn(σ).

where the sum is over all permutations σ of the numbers 1, . . . , n, and sgn(σ) ∈ {+1,−1}. For a permutation
σ, sgn(σ) is the parity of the number of swaps one needs to transform σ into the identity permutations. For
example, for n = 4, sgn(1, 2, 3, 4) = +1 because we need no swaps, sgn(2, 1, 3, 4) = −1 because we can
transform it to the identity just by swapping 1, 2 and sgn(3, 1, 2, 4) = +1.

Properties of Determinant

• For a matrix A ∈ Rn×n, det(A) ∕= 0 if and only if the columns of A are linearly independent. Recall
that for a set of vectors v1, . . . , vn ∈ Rn, we say they are linearly independent if for any set of coefficients
c1, . . . , cn

c1v1 + c2v2 + · · ·+ cnvn = 0

only when c1 = c2 = · · · = cn = 0. In other words, v1, . . . , vn are linearly independent if no vi can be
written as a linear combination of the rest of the vectors.

• For any matrix A ∈ Rn×n, with eigenvalues λ1, . . . ,λn,

det(A) =

n&

i=1

λi

So, det(A) = 0 iff A has at least one zero eigenvalue. So, it follows from the previous fact that A has
a zero eigenvalue iff columns of A are linearly independent.

• For any two square matrices A,B ∈ Rn×n,

det(AB) = det(A) det(B).

Characteristic Polynomial For a matrix A ∈ Rn×n we write det(xI−A) for an indeterminant (variable)
x is called the characteristic polynomial of A. The roots of this polynomial are the eigenvalues of A. In
particular,

det(xI −A) = (x− λ1)(x− λ2) . . . (x− λn),

where λ1, . . . ,λn are the eigenvalues of A. It follows from the above identity that for x = 0, det(−A) =,−
i=1 λi or equivalently, det(A) =

,n
i=1 λi.

Rank The rank of a matrix A ∈ Rn×n is the number of nonzero eigenvalues of A. More generally, the rank
of a matrix A ∈ Rm×n is the number of nonzero singular values of A. Or in other words, it is the number of
nonzero eigenvalues of AA⊺.



4 Lecture 7: Background / Cheat Sheet

PSD matrices We discuss several equivalent defnitions of PSD matrices. A symmetric matrix A ∈ Rn×n

is positive semidefnite (PSD) iff

• All eigenvalues of A are nonnegative

• A can be written as BB⊺ for some matrix B ∈ Rn×m.

• x⊺Ax ≥ 0 for all vectors x ∈ Rn.

• det(AS,S) ≥ 0 for all S ⊆ {1, . . . , n} where AS,S denotes the square submatrix of A with rows and
columns indexed by S.

The following fact about PSD matrices is immediate. If A ≽ 0 is an n × n matrix, then for any matrix
C ∈ Rk×n,

CACT ≽ 0.

This is because for any vector x ∈ Rk,

xTCACTx = (CTx)TA(CTx) = yTAy ≥ 0,

where y = CTx.

For two symmetric A,B ∈ Rn we write A ≼ B if and only if B −A ≽ 0. In other words, A ≼ B if and only
if for any vector x ∈ Rn,

xTAx ≤ xTBx.

Let λ1, . . . ,λn be the eigenvalues of A, and λ̃1, . . . , λ̃n be the eigenvalues of B. If A ≼ B, then for all i,
λi ≤ λ̃i.

Nonsymmetric Matrices Any matrix A ∈ Rm×n (for m ≤ n) can be written as

A =

m!

i=1

σiuiv
⊺
i

where

• u1, . . . , um ∈ Rm form an orthonormal set of vectors. These are called left singular vectors of A and
they have the property, uiA = σivi. These vectors are the eigenvectors of the matrix AA⊺.

• v1, . . . , vm ∈ Rn form an orthonormal set of vectors. Note that these vectors do not necessarily span
the space. These vectors are eigenvectors of the matrix A⊺A.

• σ1, . . . ,σm are called the singular values of A. They are always real an nonnegative. In fact they are
eigenvalues of the PSD matrix AA⊺.

Rotation Matrix A matrix Rn×n is a rotation matrix iff ‖Rx‖2 = ‖x‖2 for all vectors x ∈ Rn. In other
words, R as an operator preserves the norm of all vectors. Next, we discuss equivalent definitions of R being
a rotation matrix. R is a rotation matrix iff

• RR⊺ = I.

• All singular values of R are 1.

• Columns of R form an orthonormal set of vectors in Rn.
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Projection Matrix A symmetric matrix P ∈ Rn×n is a projection matrix iff

• It can be written as P =
*k

i=1 viv
⊺
i for some 1 ≤ k ≤ n.

• All eigenvalues of P are 0 or 1.

• PP = P .

It follows from the spectral theorem that there is a unique projection matrix of rank n and that is the identity
matrix. In general a projection matrix projects any given vector x to the linear subspace corresponding to
span of the vectors v1, . . . , vk.

Trace For a square matrix A ∈ Rn×n we write

Tr(A) =

n!

i=1

Ai,i

to denote the sum of entries on the diagonal of A. Next, we discuss several properties of the trace.

• Trace of A is equal to the sum of all eigenvalues of A.

• Trace is a linear operator, for any two square matrices A,B ∈ Rn×n

Tr(A+B) = Tr(A) + Tr(B)

Tr(tA) = tTr(A), ∀t ∈ R.

• It follows by the previous fact that for a random matrix X, E [Tr(X)] = Tr(E [X]).

• For any pair of matrices A ∈ Rn×k and B ∈ Rk×n such that AB is a square matrix we have

Tr(AB) = Tr(BA).

So, in particular, for any vector v ∈ Rn,

Tr(vv⊺) = Tr(v⊺v) = ‖v‖2.

• For any matrix A ∈ Rm×n

‖A‖2F =

m!

i=1

n!

j=1

A2
i,j = Tr(AA⊺).

Matrix Chernoff Bound Let X be a random n× n PSD matrix. Suppose that X ≼ αE [X]with proba-
bility 1 for some α ≥ 0. Let X1, . . . , Xk be independent copies of X. Then, for any 0 < ε < 1,

P
-
(1− ε)E [X] ≼ 1

k
(X1 + · · ·+Xk) ≼ (1 + ε)E [X]

.
≥ 1− 2ne−ε2k/4α.
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3 Optimization

Convex Functions A function f : Rn → R is convex on a set S ⊆ Rn if for any two points x, y ∈ S, we
have

f

)
x+ y

2

+
≤ 1

2
(f(x) + f(y)).

We say f is concave if for any such x, y ∈ S, we have

f (f(αx+ (1− α)y) ≥ αf(x) + (1− α)f(y),

for any 0 ≤ α ≤ 1. There is an equivalent definition of convexity: For a function f : Rn → R, the Hessian of
f , ∇2f is a n× n matrix defined as follows:

(∇2f)i,j = ∂xi∂xjf

for all 1 ≤ i, j ≤ n. We can show that f is convex over S if and only if for all a ∈ S,

∇2f
(((
x=a

≽ 0.

For example, consider the function f(x) = xTAx for x ∈ Rn and A ∈ Rn×n. Then, ∇2f = A. So, f is
convex (over Rn) if and only if A ≽ 0.

For another example, let f : R → R be f(x) = xk for some integer k ≥ 2. Then, f ′′(x) = k(k − 1)xk−2. If k
is an even integer, f ′′(x) ≥ 0 over all x ∈ R, so f is convex over all real numbers. On the other hand, if k is
an odd integer then f ′′(x) ≥ 0 if and only if x ≥ 0. So, in this f is convex only over non-negative reals.

Similarly, f is concave over S, if ∇2f
(((
x=a

≼ 0 for all a ∈ S. For example, x 0→ log x is concave over all

positive reals.

Convex set We say a set S ⊆ Rn is convex if for any pair of points x, y ∈ S, the line segment connecting
x to y is in S.

For example, let f : Rn → R be a convex function over a set S ⊆ Rn. Let t ∈ R, and define

T = {x ∈ Rn : f(x) ≤ t}.

Then, T is convex. This is because if x, y ∈ T , then for any 0 ≤ α ≤ 1,

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) ≤ αt+ (1− α)t = t

where the first inequality follows by convexity of f . So, αx+ (1− α) ∈ T and T is convex.

Norms are Convex functions A norm ‖ · ‖ is defined as a function that maps Rn to R and satisfies the
following three properties,

i) ‖x‖ ≥ 0 for all x ∈ Rn,

ii) ‖αx‖ = α‖x‖ for all α ≥ 0 and x ∈ Rn,

iii) Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ Rn.

It is easy to see that any norm function is a convex function: This is because for any x, y ∈ Rn, and
0 ≤ α ≤ 1,

‖αx+ (1− α)y‖ ≤ ‖αx‖+ ‖(1− α)y‖ = α‖x‖+ (1− α)‖y‖.
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4 Useful Inequalities

• For real numbers, a1, . . . , an and nonnegative reals b1, . . . , bn,

min
i

ai
bi

≤ a1 + · · ·+ an
b1 + · · ·+ bn

≤ max
i

ai
bi

• Cauchy-Schwartz inequality: For real numbers a1, . . . , an, b1, . . . , bn,

n!

i=1

ai · bi ≤
/!

i

a2i ·
/!

i

b2i

There is an equivalent vector-version of the above inequality. For any two vectors u, v ∈ Rn,

n!

i=1

ui · vi = 〈u, v〉 ≤ ‖u‖ · ‖v‖

The equality in the above holds only when u, v are parallel.

• AM-GM inequality: For any n nonnegative real numbers a1, . . . , . . . , an,

a1 + · · ·+ an
n

≥ (a1 · a2 · . . . an)1/n.

• Relation between norms: For any vector a ∈ Rn,

‖a‖2 ≤ ‖a‖1 ≤
√
n · ‖a‖2

The right inequality is just Cauchy-Schwartz inequality.

• For any real numbers a1, . . . , an,

(|a1|+ · · ·+ |an|)2 ≤ n(a21 + · · ·+ a2n).

This is indeed a special case of Cauchy-Schwartz inequality.

• For any real number x, 1− x ≤ e−x. In this course we use 1− x ≈ e−x to simplify calculations.


