Background / Cheat Sheet

In this note I will discuss several background materials that we will discuss and exploit many times throughout this course.

1 Randomized Algorithm

Expectation: For a random variable X with domain, the discrete set S,

$$
\mathbb{E}[X]=\sum_{s \in S} \mathbb{P}[X=s] s
$$

Linearity of Expectation: For any two Random variables X, Y,

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Variance: The variance of a random variable X is defined as $\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]$. The following identity always holds,

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}
$$

The standard deviation of $X, \sigma(X)=\sqrt{\operatorname{Var}(X)}$.

Mutual Independence A set of random variables X_{1}, \ldots, X_{n} are mutually independent if for any $S \subseteq$ $\{1, \ldots, n\}$,

$$
\mathbb{E}\left[\prod_{i \in S} X_{i}\right]=\prod_{i \in S} \mathbb{E}\left[X_{i}\right]
$$

k-wise Independence For an integer $k \geq 2$, a set of random variables X_{1}, \ldots, X_{n} is set to be k-wise independent if for any set $S \subseteq\{1, \ldots, n\}$ of size k,

$$
\mathbb{E}\left[\prod_{i \in S} X_{i}\right]=\prod_{i \in S} \mathbb{E}\left[X_{i}\right]
$$

Sum of Variance: Let X_{1}, \ldots, X_{n} be pairwise independent random variables, then

$$
\operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)
$$

Markov's Inequality Let X be a nonnegative random variable, then for any $k \geq 0$,

$$
\mathbb{P}[X \geq k] \leq \frac{\mathbb{E}[X]}{k}
$$

Chebyshev's Inequality For any random variable X and any $\epsilon>0$,

$$
\mathbb{P}[|X-\mathbb{E}[X]|>\epsilon] \leq \frac{\operatorname{Var}(X)}{\epsilon^{2}}
$$

So, equivalently,

$$
\mathbb{P}[|X-\mathbb{E}[X]|>k \sigma(X)] \leq \frac{1}{k^{2}}
$$

Hoeffding's Inequality Let X_{1}, \ldots, X_{n} be independent random variables where for all $i, X_{i} \in\left[a_{i}, b_{i}\right]$. Then, for any $\epsilon>0$,

$$
\mathbb{P}\left[\left|\sum_{i=1}^{n} X_{i}-\mathbb{E} \sum_{i=1}^{n} X_{i}\right|>\epsilon\right] \leq 2 \exp \left(\frac{-2 \epsilon^{2}}{\sum_{i=1}^{n}\left(a_{i}-b_{i}\right)^{2}}\right)
$$

Multiplicative Chernoff Bound Let X_{1}, \ldots, X_{n} be independent Bernoulli random variables, i.e., for all $i, X_{i} \in\{0,1\}$, and let $X=X_{1}+\cdots+X_{n}$ and $\mu=\mathbb{E}[X]$. Then, for any $\epsilon>0$,

$$
\mathbb{P}[X>(1+\epsilon) \mu] \leq\left(\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right)^{\mu} \leq e^{-\frac{\epsilon^{2} \mu}{2+\epsilon}}
$$

and

$$
\mathbb{P}[X<(1-\epsilon) \mu] \leq e^{-\epsilon^{2} \mu / 2}
$$

McDiarmid's Inequality Let $X_{1}, \ldots, X_{n} \in \mathcal{X}$ be independent random variables. Let $f: \mathcal{X}^{n} \rightarrow \mathbb{R}$. If for all $1 \leq i \leq n$ and for all x_{1}, \ldots, x_{n} and \tilde{x}_{i},

$$
\left|f\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i-1}, \tilde{x}_{i}, x_{i+1}, \ldots, x_{n}\right)\right| \leq c_{i}
$$

then,

$$
\mathbb{P}\left[\left|f\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E} f\left(X_{1}, \ldots, X_{n}\right)\right|>\epsilon\right] \leq 2 \exp \left(-\frac{-2 \epsilon^{2}}{\sum_{i} c_{i}^{2}}\right)
$$

Concentration of Gaussians Let X_{1}, \ldots, X_{n} be independent standard normal random variables i.e., for all $i, X_{i} \sim \mathcal{N}(0,1)$. Then, for any $\epsilon>0$,

$$
\mathbb{P}\left[\left|\sum_{i=1}^{n} X_{i}^{2}-n\right|>\epsilon\right] \leq 2 \exp \left(\frac{\epsilon^{2}}{8}\right)
$$

Gaussian Density Function The density function of a 1-dimensional normal random variable $X \sim$ $\mathcal{N}\left(\mu, \sigma^{2}\right)$ is as follows:

$$
\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

More generally, we say X_{1}, \ldots, X_{n} form a multivariate normal random variable when they have following density function:

$$
\operatorname{det}(2 \pi \Sigma)^{-1 / 2} e^{-(x-\mu)^{\top} \Sigma^{-1}(x-\mu) / 2}
$$

where Σ is the covariance matrix of X_{1}, \ldots, X_{n}. In particular, for all i, j,

$$
\Sigma_{i, j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)=\mathbb{E}\left[X_{i}-\mathbb{E}\left[X_{i}\right]\right] \mathbb{E}\left[X_{j}-\mathbb{E}\left[X_{j}\right]\right]=\mathbb{E}\left[X_{i} X_{j}\right]-\mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right]
$$

As a special case, if X_{1}, \ldots, X_{n} are standard normals chosen independently then Σ is just the identity matrix.

2 Spectral Algorithms

Determinant Let $A \in \mathbb{R}^{n \times n}$, the determinant of A can be written as follows:

$$
\operatorname{det}(A)=\sum_{\sigma} \prod_{i=1}^{n} A_{i, \sigma(i)} \operatorname{sgn}(\sigma)
$$

where the sum is over all permutations σ of the numbers $1, \ldots, n$, and $\operatorname{sgn}(\sigma) \in\{+1,-1\}$. For a permutation $\sigma, \operatorname{sgn}(\sigma)$ is the parity of the number of swaps one needs to transform σ into the identity permutations. For example, for $n=4, \operatorname{sgn}(1,2,3,4)=+1$ because we need no swaps, $\operatorname{sgn}(2,1,3,4)=-1$ because we can transform it to the identity just by swapping 1,2 and $\operatorname{sgn}(3,1,2,4)=+1$.

Properties of Determinant

- For a matrix $A \in \mathbb{R}^{n \times n}, \operatorname{det}(A) \neq 0$ if and only if the columns of A are linearly independent. Recall that for a set of vectors $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$, we say they are linearly independent if for any set of coefficients c_{1}, \ldots, c_{n}

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}=0
$$

only when $c_{1}=c_{2}=\cdots=c_{n}=0$. In other words, v_{1}, \ldots, v_{n} are linearly independent if no v_{i} can be written as a linear combination of the rest of the vectors.

- For any matrix $A \in \mathbb{R}^{n \times n}$, with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$,

$$
\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i}
$$

So, $\operatorname{det}(A)=0$ iff A has at least one zero eigenvalue. So, it follows from the previous fact that A has a zero eigenvalue iff columns of A are linearly independent.

- For any two square matrices $A, B \in \mathbb{R}^{n \times n}$,

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Characteristic Polynomial For a matrix $A \in \mathbb{R}^{n \times n}$ we write $\operatorname{det}(x I-A)$ for an indeterminant (variable) x is called the characteristic polynomial of A. The roots of this polynomial are the eigenvalues of A. In particular,

$$
\operatorname{det}(x I-A)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \ldots\left(x-\lambda_{n}\right)
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A. It follows from the above identity that for $x=0, \operatorname{det}(-A)=$ $\prod_{i=1}^{-} \lambda_{i}$ or equivalently, $\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i}$.

Rank The rank of a matrix $A \in \mathbb{R}^{n \times n}$ is the number of nonzero eigenvalues of A. More generally, the rank of a matrix $A \in \mathbb{R}^{m \times n}$ is the number of nonzero singular values of A. Or in other words, it is the number of nonzero eigenvalues of $A A^{\top}$.

PSD matrices We discuss several equivalent defnitions of PSD matrices. A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefnite (PSD) iff

- All eigenvalues of A are nonnegative
- A can be written as $B B^{\top}$ for some matrix $B \in \mathbb{R}^{n \times m}$.
- $x^{\boldsymbol{\top}} A x \geq 0$ for all vectors $x \in \mathbb{R}^{n}$.
- $\operatorname{det}\left(A_{S, S}\right) \geq 0$ for all $S \subseteq\{1, \ldots, n\}$ where $A_{S, S}$ denotes the square submatrix of A with rows and columns indexed by S.

The following fact about PSD matrices is immediate. If $A \succeq 0$ is an $n \times n$ matrix, then for any matrix $C \in \mathbb{R}^{k \times n}$,

$$
C A C^{T} \succeq 0
$$

This is because for any vector $x \in \mathbb{R}^{k}$,

$$
x^{T} C A C^{T} x=\left(C^{T} x\right)^{T} A\left(C^{T} x\right)=y^{T} A y \geq 0
$$

where $y=C^{T} x$.
For two symmetric $A, B \in \mathbb{R}^{n}$ we write $A \preceq B$ if and only if $B-A \succeq 0$. In other words, $A \preceq B$ if and only if for any vector $x \in \mathbb{R}^{n}$,

$$
x^{T} A x \leq x^{T} B x
$$

Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of A, and $\tilde{\lambda}_{1}, \ldots, \tilde{\lambda}_{n}$ be the eigenvalues of B. If $A \preceq B$, then for all i, $\lambda_{i} \leq \tilde{\lambda}_{i}$.

Nonsymmetric Matrices Any matrix $A \in \mathbb{R}^{m \times n}$ (for $m \leq n$) can be written as

$$
A=\sum_{i=1}^{m} \sigma_{i} u_{i} v_{i}^{\top}
$$

where

- $u_{1}, \ldots, u_{m} \in \mathbb{R}^{m}$ form an orthonormal set of vectors. These are called left singular vectors of A and they have the property, $u_{i} A=\sigma_{i} v_{i}$. These vectors are the eigenvectors of the matrix $A A^{\top}$.
- $v_{1}, \ldots, v_{m} \in \mathbb{R}^{n}$ form an orthonormal set of vectors. Note that these vectors do not necessarily span the space. These vectors are eigenvectors of the matrix $A^{\top} A$.
- $\sigma_{1}, \ldots, \sigma_{m}$ are called the singular values of A. They are always real an nonnegative. In fact they are eigenvalues of the PSD matrix $A A^{\top}$.

Rotation Matrix A matrix $R^{n \times n}$ is a rotation matrix iff $\|R x\|_{2}=\|x\|_{2}$ for all vectors $x \in \mathbb{R}^{n}$. In other words, R as an operator preserves the norm of all vectors. Next, we discuss equivalent definitions of R being a rotation matrix. R is a rotation matrix iff

- $R R^{\top}=I$.
- All singular values of R are 1 .
- Columns of R form an orthonormal set of vectors in \mathbb{R}^{n}.

Projection Matrix A symmetric matrix $P \in \mathbb{R}^{n \times n}$ is a projection matrix iff

- It can be written as $P=\sum_{i=1}^{k} v_{i} v_{i}^{\top}$ for some $1 \leq k \leq n$.
- All eigenvalues of P are 0 or 1 .
- $P P=P$.

It follows from the spectral theorem that there is a unique projection matrix of rank n and that is the identity matrix. In general a projection matrix projects any given vector x to the linear subspace corresponding to span of the vectors v_{1}, \ldots, v_{k}.

Trace For a square matrix $A \in \mathbb{R}^{n \times n}$ we write

$$
\operatorname{Tr}(A)=\sum_{i=1}^{n} A_{i, i}
$$

to denote the sum of entries on the diagonal of A. Next, we discuss several properties of the trace.

- Trace of A is equal to the sum of all eigenvalues of A.
- Trace is a linear operator, for any two square matrices $A, B \in \mathbb{R}^{n \times n}$

$$
\begin{aligned}
\operatorname{Tr}(A+B) & =\operatorname{Tr}(A)+\operatorname{Tr}(B) \\
\operatorname{Tr}(t A) & =t \operatorname{Tr}(A), \forall t \in \mathbb{R}
\end{aligned}
$$

- It follows by the previous fact that for a random matrix $X, \mathbb{E}[\operatorname{Tr}(X)]=\operatorname{Tr}(\mathbb{E}[X])$.
- For any pair of matrices $A \in \mathbb{R}^{n \times k}$ and $B \in \mathbb{R}^{k \times n}$ such that $A B$ is a square matrix we have

$$
\operatorname{Tr}(A B)=\operatorname{Tr}(B A)
$$

So, in particular, for any vector $v \in \mathbb{R}^{n}$,

$$
\operatorname{Tr}\left(v v^{\boldsymbol{\top}}\right)=\operatorname{Tr}\left(v^{\boldsymbol{\top}} v\right)=\|v\|^{2}
$$

- For any matrix $A \in \mathbb{R}^{m \times n}$

$$
\|A\|_{F}^{2}=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i, j}^{2}=\operatorname{Tr}\left(A A^{\top}\right)
$$

Matrix Chernoff Bound Let X be a random $n \times n$ PSD matrix. Suppose that $X \preceq \alpha \mathbb{E}[X]$ with probability 1 for some $\alpha \geq 0$. Let X_{1}, \ldots, X_{k} be independent copies of X. Then, for any $0<\epsilon<1$,

$$
\mathbb{P}\left[(1-\epsilon) \mathbb{E}[X] \preceq \frac{1}{k}\left(X_{1}+\cdots+X_{k}\right) \preceq(1+\epsilon) \mathbb{E}[X]\right] \geq 1-2 n e^{-\epsilon^{2} k / 4 \alpha}
$$

3 Optimization

Convex Functions A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex on a set $S \subseteq \mathbb{R}^{n}$ if for any two points $x, y \in S$, we have

$$
f\left(\frac{x+y}{2}\right) \leq \frac{1}{2}(f(x)+f(y))
$$

We say f is concave if for any such $x, y \in S$, we have

$$
f(f(\alpha x+(1-\alpha) y) \geq \alpha f(x)+(1-\alpha) f(y)
$$

for any $0 \leq \alpha \leq 1$. There is an equivalent definition of convexity: For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the Hessian of $f, \nabla^{2} f$ is a $n \times n$ matrix defined as follows:

$$
\left(\nabla^{2} f\right)_{i, j}=\partial_{x_{i}} \partial_{x_{j}} f
$$

for all $1 \leq i, j \leq n$. We can show that f is convex over S if and only if for all $a \in S$,

$$
\left.\nabla^{2} f\right|_{x=a} \succeq 0
$$

For example, consider the function $f(x)=x^{T} A x$ for $x \in \mathbb{R}^{n}$ and $A \in \mathbb{R}^{n \times n}$. Then, $\nabla^{2} f=A$. So, f is convex (over \mathbb{R}^{n}) if and only if $A \succeq 0$.

For another example, let $f: \mathbb{R} \rightarrow \mathbb{R}$ be $f(x)=x^{k}$ for some integer $k \geq 2$. Then, $f^{\prime \prime}(x)=k(k-1) x^{k-2}$. If k is an even integer, $f^{\prime \prime}(x) \geq 0$ over all $x \in \mathbb{R}$, so f is convex over all real numbers. On the other hand, if k is an odd integer then $f^{\prime \prime}(x) \geq 0$ if and only if $x \geq 0$. So, in this f is convex only over non-negative reals.

Similarly, f is concave over S, if $\left.\nabla^{2} f\right|_{x=a} \preceq 0$ for all $a \in S$. For example, $x \mapsto \log x$ is concave over all positive reals.

Convex set We say a set $S \subseteq \mathbb{R}^{n}$ is convex if for any pair of points $x, y \in S$, the line segment connecting x to y is in S.

For example, let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function over a set $S \subseteq \mathbb{R}^{n}$. Let $t \in \mathbb{R}$, and define

$$
T=\left\{x \in \mathbb{R}^{n}: f(x) \leq t\right\}
$$

Then, T is convex. This is because if $x, y \in T$, then for any $0 \leq \alpha \leq 1$,

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y) \leq \alpha t+(1-\alpha) t=t
$$

where the first inequality follows by convexity of f. So, $\alpha x+(1-\alpha) \in T$ and T is convex.

Norms are Convex functions A norm $\|\cdot\|$ is defined as a function that maps \mathbb{R}^{n} to \mathbb{R} and satisfies the following three properties,
i) $\|x\| \geq 0$ for all $x \in \mathbb{R}^{n}$,
ii) $\|\alpha x\|=\alpha\|x\|$ for all $\alpha \geq 0$ and $x \in \mathbb{R}^{n}$,
iii) Triangle inequality: $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in \mathbb{R}^{n}$.

It is easy to see that any norm function is a convex function: This is because for any $x, y \in R^{n}$, and $0 \leq \alpha \leq 1$,

$$
\|\alpha x+(1-\alpha) y\| \leq\|\alpha x\|+\|(1-\alpha) y\|=\alpha\|x\|+(1-\alpha)\|y\| .
$$

4 Useful Inequalities

- For real numbers, a_{1}, \ldots, a_{n} and nonnegative reals b_{1}, \ldots, b_{n},

$$
\min _{i} \frac{a_{i}}{b_{i}} \leq \frac{a_{1}+\cdots+a_{n}}{b_{1}+\cdots+b_{n}} \leq \max _{i} \frac{a_{i}}{b_{i}}
$$

- Cauchy-Schwartz inequality: For real numbers $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$,

$$
\sum_{i=1}^{n} a_{i} \cdot b_{i} \leq \sqrt{\sum_{i} a_{i}^{2}} \cdot \sqrt{\sum_{i} b_{i}^{2}}
$$

There is an equivalent vector-version of the above inequality. For any two vectors $u, v \in \mathbb{R}^{n}$,

$$
\sum_{i=1}^{n} u_{i} \cdot v_{i}=\langle u, v\rangle \leq\|u\| \cdot\|v\|
$$

The equality in the above holds only when u, v are parallel.

- AM-GM inequality: For any n nonnegative real numbers $a_{1}, \ldots, \ldots, a_{n}$,

$$
\frac{a_{1}+\cdots+a_{n}}{n} \geq\left(a_{1} \cdot a_{2} \cdot \ldots a_{n}\right)^{1 / n}
$$

- Relation between norms: For any vector $a \in \mathbb{R}^{n}$,

$$
\|a\|_{2} \leq\|a\|_{1} \leq \sqrt{n} \cdot\|a\|_{2}
$$

The right inequality is just Cauchy-Schwartz inequality.

- For any real numbers a_{1}, \ldots, a_{n},

$$
\left(\left|a_{1}\right|+\cdots+\left|a_{n}\right|\right)^{2} \leq n\left(a_{1}^{2}+\cdots+a_{n}^{2}\right)
$$

This is indeed a special case of Cauchy-Schwartz inequality.

- For any real number $x, 1-x \leq e^{-x}$. In this course we use $1-x \approx e^{-x}$ to simplify calculations.

