
CSE 521: Design and Analysis of Algorithms Fall 2020

Problem Set 4
Deadline: Dec 8th in Canvas

1) Let G be a graph with maximum degree ∆ := maxv d(v) for any v ∈ V . Show that

λmax(A) ≥
√
∆.

Hint: Recall that by Rayleigh quotient, λmax = maxx
xTAx
xT x

. So, to lower bound λmax it is enough to

construct a vector x such that xTAx ≥
√
∆xTx.

2) Given a connected graph G = (V,E) you can construct an electrical network by replacing every edge with
an effective resistance of resistance 1. Given any two vertices u, v ∈ V , the effective resistance between
u, v is the resistance that you can put between u, v such that the energy of any electrical flow sent from u
to v is the same as the original network. For example, the effective resistance between 2, 3 in the following
network is 1. It turns out that for any pair of vertices u, v ∈ V , the effective resistance between u, v is
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equal to bTu,vL
†bu,v where bu,v = 1u − 1v and L† is the pseudo inverse of L; if L =

󰁓n
i=1 λiviv

T
i , then

L† =
󰁓

i:λi ∕=0
1
λi
viv

T
i . Note that since L has a zero eigenvalue, its inverse is not well-defined.

It is a well-known fact that in any connected graph with n vertices the sum of the effective resistances
of all edges is equal to n− 1. Here, we prove this fact: Show that

󰁛

(u,v)∈E

bTu,vL
+bu,v = n− 1.

3) Given a graph G = (V,E), recall that M ⊆ E is a matching if no two edges in M have the same endpoint.
We say a matching M is maximal if there is no matching M ′ ⊋ M , i.e., there is no way to add an edge to
M and get a larger matching. Note that a maximal matching is not necessarily a maximum matching.

a) Show that for any n, the cycle C2n has a maximal matching M of size |M | ≤ 2n/3+ 1. Note that the
size of a maximum matching of C2n is n.

b) Let G be a d-regular graph with d = λ1 ≥ · · · ≥ λn ≥ −d be eigenvalues of the adjacency matrix of G.
Let λ∗ = max{λ2, |λn|}. A d-regular strong expander graph satisfies λ∗ ≤ O(

√
d). It is known that a

random d-regular graph is a strong expander with high probability.

Use the expander mixing lemma to show that any maximal matching of G has size at least (1/2 −
O(λ∗/d))n. In other words, it is very easy to approximate the maximum matching problem in random
graphs, any maximal matching would work.
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Theorem 4.1 (Expander Mixing Lemma). Let G be a d-regular graph and d = λ1 ≥ λ2 ≥ . . .λn ≥ −d
be the eigenvalues of the adjacency matrix of G, A. Let λ∗ = max{λ2, |λn|}. Then, for any two (non
necessarily disjoint) sets S, T ⊆ V ,

󰀏󰀏󰀏󰀏|E(S, T )|− d · |S| · |T |
n

󰀏󰀏󰀏󰀏 ≤ λ∗
󰁳
|S||T |.

Here E(S, T ) = {(u, v) ∈ E : u ∈ S, v ∈ T}.

Note that d|S||T |/n is the expected number of edges between S, T in a random graph where there is an
edge between each pair of vertices u, v with probability d/n. So, the above lemma says that in a strong
expander graph, for any large enough sets |S|, |T |, the number of edges between S, T is very close to what
you see in a random graph in expectation.

4) In this problem you are supposed to implement the spectral partitioning algorithm that we discussed in
class. You are given a giant network, “com-Amazon” input in https://snap.stanford.edu/data/ and you
should find a sparse cut in this network. My code has found a cut of sparsity about 0.7%. Note that
since the graph is huge you need to carefully store the edges of this graph. You should also use the power
method to find the 2nd smallest eigenvalue of the normalized Laplacian matrix. In the output you should
write the sparsity of the cut that you find and the id of the vertices in the smaller side of the cut. Please
submit your code and the output to Canvas.

5) You are given data containing grades in different courses for 5 students; say Gi,j is the grade of student
i in course j. (Of course, Gi,j is not defined for all i, j since each student has only taken a few courses.)
We are trying to “explain” the grades as a linear function of the student’s innate aptitude, the easiness
of the course and some error term.

Gi,j = aptitudei + easinessj + 󰂃i,j ,

where 󰂃i,j is an error term of the linear model. We want to find the best model that minimizes the sum
of the |󰂃i,j |’s.

a) Write a linear program to find aptitudei and easinessj for all i, j minimizing
󰁓

i,j |󰂃i,j |.
b) Use any standard package for linear programming (Matlab/CVX, Freemat, Sci-Python, Excel etc.; we

recommend CVX on matlab) to fit the best model to this data. Include a printout of your code, the
objective value of the optimum,

󰁓
i,j |󰂃i,j |, and the calculated easiness values of all the courses and

the aptitudes of all the students.

MAT CHE ANT REL POL ECO COS
Alex C+ B B+ A- C+
Billy B- A- A+ D+ B
Chris B- B+ C B B+
David A+ B- A- A-
Elise B- D+ B+ B D

Assume A = 4, B = 3 and so on. Also, let B+ = 3.33 and A− = 3.66.

6) Extra Credit. In this problem we see applications of expander graphs in coding theory. Error correcting
codes are used in all digital transmission and data storage schemes. Suppose we want to transfer m bits
over a noisy channel. The noise may flip some of the bits; so 0101 may become 1101. Since the transmitter
wants that the receiver correctly receives the message, he needs to send n > m bits encoded such that
the receiver can recover the message even in the presence of noise. For example, a naive way is to send
every bit 3 times; so, 0101 becomes 000111000111. If only 1 bit were flipped in the transmission receiver
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can recover the message but even if 2 bits are flipped, e.g., 110111000111 the recover is impossible. This
is a very inefficient coding scheme.

An error correcting code is a mapping C : {0, 1}m → {0, 1}n. Every string in the image of C is called a
codeword. We say a coding scheme is linear, if there is a matrix M ∈ {0, 1}(n−m)×n such that for any
y ∈ {0, 1}n, y is a codeword if and only if

My = 0.

Note that we are doing addition and multiplication in the field F2.

a) Suppose C is a linear code. Construct a matrix A ∈ {0, 1}n×m such that for any x ∈ {0, 1}m, Ax is a
code word and that for any distinct x, y ∈ {0, 1}m, Ax ∕= Ay.

The rate of a code C is defined as r = m/n. Codes of higher rate are more efficient; here we will be
interested in designing codes with r being an absolute constant bounded away from 0. The Hamming
distance between two codewords c1, c2 is the number of bits that they differ, 󰀂c1 − c2󰀂1. The minimum
distance of a code is minc1,c2 󰀂c1 − c2󰀂1.

b) Show that the minimum distance of a linear code is the minimum Hamming weight of its codewords,
i.e., minc 󰀂c󰀂1.

Note that if C has distance d, then it is possible to decode a message if less than d/2 of the bits are
flipped. The minimum relative distance of C is δ = 1

n min 󰀂c1 − c2󰀂1. So, ideally, we would like to have
codes with constant minimum relative distance; in other words, we would like to say even if a constant
fraction of the bits are flipped still one can recover the original message.

Next, we describe an error correcting code scheme based on bipartite expander graphs with constant rate
and constant minimum relative distance. A (nL, nR, D, γ,α) expander is a bipartite graph G(L ∪ R,E)
such that |L| = nL, |R| = nR and every vertex of L has degree D such that for any set S ⊆ L of size
|S| ≤ γnL,

N(S) ≥ α|S|.

In the above, N(S) ⊆ R is the number of neighbors of vertices of S. One can generate the above family
of bipartite expanders using ideas similar to Problem 1. We use the following theorem without proving
it.

Theorem 4.2. For any 󰂃 > 0 and m ≤ n there exists γ > 0 and D ≥ 1 such that a (n,m,D, γ, D(1− 󰂃))-
expander exists. Additionally, D = Θ(log(nL/nR)/󰂃) and γnL = Θ(󰂃nR/D).

Now, we describe how to construct the matrix M . We start with a (nL, nR, D, γ, D(1 − 󰂃)) expander
for nL = n, nR = n − m. For our calculations it is enough to let n = 2m. We name the vertices of L,
{1, 2, . . . , n}; so each bit of a codeword corresponds to a vertex in L. We let M ∈ {0, 1}(n−m)×n be the
Tutte matrix corresponding to this graph, i.e., Mi,j = 1 if and only if the i-th vertex in R is connected to
the j-th vertex in L. Observe that by construction this code has rate 1/2. Next, we see that δ is bounded
away from 0.

c) For a set S ⊆ L, let U(S) be the set of unique neighbors of S, i.e., each vertex in U(S) is connected
to exactly one vertex of S. Show that for any S ⊆ L such that |S| ≤ γn,

|U(S)| ≥ D(1− 2󰂃)|S|.

d) Show that if 󰂃 < 1/2 the minimum relative distance of C is at least γ.

The decoding algorithm is simple to describe but we will not describe it here.
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