CSE 521: Design and Analysis of Algorithms

Problem Set 2

Deadline: Nov 1st (at 11:59 PM) in Canvas

Instructions

- You should think about each problem by yourself for at least an hour before choosing to collaborate with others.
- You are allowed to collaborate with fellow students taking the class in solving the problems (in groups of at most 2 people for each problem). But you **must** write your solution on your own.
- You are not allowed to search for answers or hints on the web. You are encouraged to contact the instructor or the TAs for a possible hint.
- You cannot collaborate on Extra credit problems
- Solutions typeset in LATEX are preferred.
- Feel free to use the Discussion Board or email the instructor or the TA if you have any questions or would like any clarifications about the problems.
- Please upload your solutions to Canvas. The solution to each problem **must** be uploaded separately.

In solving these assignments and any future assignment, feel free to use these approximations:

$$1 - x \approx e^{-x}, \qquad n! \approx (n/e)^n, \qquad \left(\frac{n}{k}\right)^k \le {\binom{n}{k}} \le \left(\frac{en}{k}\right)^k$$

1) Let U be a universe. A family of hash functions $\mathcal{H} := \{h : U \to \{-1, +1\}\}$ is a sketching hash family with error $\epsilon > 0$ if for any function $f : U \to \mathbb{R}$, which is not identically zero,

$$\mathbb{P}\left[\sum_{i\in U} f(i)h(i) = 0\right] \le \epsilon.$$

The value $sk_h(f) := \sum_{i \in U} f(i)h(i)$ is called the *sketch* of f.

a) Prove that if $f, f': U \to \mathbb{R}$ are different functions, then

$$\mathbb{P}\left[sk_h(f) = sk_h(f')\right] \le \epsilon.$$

- b) Suppose \mathcal{H} is the family of *all* functions from U to $\{-1, +1\}$. Prove that it is a sketching family with error $\epsilon = 1/2$.
- c) Suppose that \mathcal{H} is a family of 4-wise independent hash functions. Prove that it is a sketching family with error $\epsilon = 2/3$. In this part you can use the Paley-Zygmund inequality:

Theorem 2.1 (Paley-Zygmund Inequality). If $Z \ge 0$ is a R.V. and $0 \le \alpha \le 1$, then

$$\mathbb{P}\left[Z > \alpha \mathbb{E}\left[Z\right]\right] \ge (1-\alpha)^2 \frac{\mathbb{E}\left[Z\right]^2}{\mathbb{E}\left[Z^2\right]}$$

Fall 2020

- 2) In the maximum cut problem we are given a graph G = (V, E) we want to find $\max_{(S,\overline{S})} |E(S,\overline{S})|$. Unlike the mincut problem, this problem is NP-complete so we don't expect to find the optimum solution efficiently. Instead, we want to find an approximate solution.
 - a) Show that the optimum solution of this problem is always at most |E|. Can you construct a graph G with m = |E| edges (for any m > 0) such that the optimum of maxcut is equal to |E|?
 - b) Design a randomized (polynomial-time) algorithm that outputs a (random) cut (S, \overline{S}) such that

$$\mathbb{E}\left[|E(S,\overline{S})|\right] \ge |E|/2$$

So, such an algorithm gives a 2-approximation for max-cut (in expectation).

c) Design a randomize (polynomial-time) algorithm that uses only $O(\log n)$ -many random bits and returns a cut (S, \overline{S}) such that

$$\mathbb{E}\left[|E(S,\overline{S})|\right] \ge |E|/2.$$

d) Design a *deterministic* (polynomial-time) algorithm that outputs a cut (S, \overline{S}) such that

$$|E(S,\overline{S})| \ge |E|/2$$

3) In this problem we design an LSH for points in \mathbb{R}^d , with the ℓ_1 distance, i.e.

$$d(p,q) = \sum_{i} |p_i - q_i|.$$

a) Let a, b be arbitrary real numbers. Fix w > 0 and let $s \in [0, w)$ chosen uniformly at random. Show that

$$\mathbb{P}\left[\left\lfloor \frac{a-s}{w} \right\rfloor = \left\lfloor \frac{b-s}{w} \right\rfloor\right] = \max\left\{0, 1 - \frac{|a-b|}{w}\right\}$$

Recall that for any real number c, $\lfloor c \rfloor$ is the largest integer which is at most c. **Hint:** Start with the case where a = 0.

b) Define a class of hash functions as follows: Fix w larger than diameter of the space. Each hash function is defined via a choice of d independently selected random real numbers s_1, s_2, \ldots, s_d , each uniform in [0, w). The hash function associated with this random set of choices is

$$h(x_1,\ldots,x_d) = \left(\left\lfloor \frac{x_1 - s_1}{w} \right\rfloor, \left\lfloor \frac{x_2 - s_2}{w} \right\rfloor, \ldots, \left\lfloor \frac{x_d - s_d}{w} \right\rfloor \right).$$

Let $\alpha_i = |p_i - q_i|$. What is the probability that h(p) = h(q) in terms of the α_i values? For what values of p_1 and p_2 is this family of functions $(r, c \cdot r, p_1, p_2)$ -sensitive? Do your calculations assuming that 1 - x is well approximated by e^{-x} .

- 4) Let $u, v \in \mathbb{R}^d$ and $g \in \mathbb{R}^d$ be a random Gaussian vector, i.e., for each $1 \leq i \leq d$, $g_i \sim \mathcal{N}(0, 1)$.
 - a) What is the expected value of $\langle g, u \rangle$?
 - b) What is the expected value of $\langle g, u \rangle \cdot \langle g, v \rangle$?
 - c) What is the expected value of $|\langle g, u \rangle|$? You can use that p.d.f. of a $\mathcal{N}(0,1) \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$.
 - d) Consider the following hash function: $h_g(u) = \text{sgn}(\langle g, u \rangle)$, where sgn is the sign function, i.e.,

$$\operatorname{sgn}(a) = \begin{cases} +1 & \text{if } a \ge 0\\ -1 & \text{otherwise} \end{cases}$$

Show that for a random Gaussian vector g and any two vectors u, v, $\mathbb{P}[h_g(u) = h_g(v)] = 1 - \frac{\theta(u,v)}{\pi}$ where $\theta(p,q)$ is the angle between the vector of p and q.

- e) Let $P \subseteq \mathbb{R}^d$ and consider the following distance function: $\operatorname{dist}(p,q) = \frac{\theta(p,q)}{\pi}$. For what values of p_1 and p_2 is this family of functions $(r, c \cdot r, p_1, p_2)$ -sensitive?
- 5) Extra Credit: Say we have a plane with n seats and we have a sequence of n passengers $1, 2, \ldots, n$ who are going to board the plane in this order and suppose passenger i is supposed to sit at seat i. Say when 1 comes he chooses to sit at some arbitrary seat different from his own sit, 1. From now on, when passenger i boards, if her seat i is available she sits at i, otherwise she chooses sits at a uniformly random seat that is still available. What is the probability that passenger n sits at her seat n?