
CSE 521: Design and Analysis of Algorithms I Fall 2020

Lecture 19: Linear Programming Relaxation, Duality and Applications
Lecturer: Shayan Oveis Gharan 12/09/20

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

1.1 Optimization

Consider an optimization problem where we are trying to find a solution with minimum cost among a set of
feasible solutions. We say an algorithm, ALG, gives an α-approximation for the problem if for any possible
input to the problem, we have

cost(ALG)

cost(OPT)
≤ α (1.1)

Here, OPT denotes the optimum solution to the problem.

To prove that a given algorithm is an α-approximation, it is sufficient to find a lower-bound for cost(OPT),
and then prove that the ratio between cost(ALG) and this lower-bound for any input is upper-bounded by
α.

1.1.1 Example: Vertex Cover

Here, we give an application of linear programming in designing an approximation algorithm for a graph
problem called vertex cover. We will design a 2-approximation algorithm. This is the best known result
for the vertex cover problem. It is a fundamental open problem to beat the factor 2 approximation for the
vertex cover problem. In the next lecture we will discuss a generalization of vertex cover called the set cover
problem and we see some applications.

Given a graph G = (V,E), we want to find a set S ⊂ V such that every edge in E is incident to at least
one vertex in S. Obviously, we can let S = V . But, here among all such sets S we want to choose a one of
minimal cost, where cost(S) is defined as

∑
i∈S ci if every vertex i has associated cost ci, and |S| if vertices

do not have any cost.

In the first step we write a (integer) program which characterizes the optimum solution. Then, we use this
program to give a lower bound on the optimum solution. We define this problem with a set of variables
xi ∀ i ∈ V , where xi is defined as

xi =

{
1 i ∈ S
0 i /∈ S

(1.2)

Our constraint that every edge must be incident to at least one vertex in S can be written as xi + xj ≥
1 ∀ i ∼ j ∈ E. So, the question is to find values for all xi’s that minimize the cost of the set S subject to the
aforementioned constraint. This can be defined as the following optimization problem

min
∑
i∈V

cixi

s.t., xi + xj ≥ 1, ∀ i ∼ j ∈ E
xi ∈ {0, 1}, ∀ i ∈ V

(1.3)

1-1

1-2 Lecture 19: Linear Programming Relaxation, Duality and Applications

Observe that the optimum solution of the above program is exactly equal to the optimum set cover. Note
that this is not a linear program, since we have that xi ∈ {0, 1} for every vertex i, rather than allowing xi
to be a continuous-valued variable. Since the vertex cover problem is NP-hard in general, we do not expect
to ever find a general solver to efficiently solve the above integer program. However, there are commercial
integer programming solver that work great in practice. They solve a set of linear inequality subject to
the each of the underlying variables being 0/1. For many practical applications these program actually
find the optimum solution very fast. So, one should always keep them in mind if we are trying to solve an
optimization problem in practice.

We can relax the above (integer) program by replacing the integer constraint with the constraint that
0 ≤ xi ≤ 1 ∀ i ∈ V . This turns the problem into a linear program. Since this is optimizing over a set of
xi’s that includes the optimum set cover, the optimal value of this linear program will be less than or equal
to the optimal value of the set cover problem, i.e. OPT LP ≤ OPT. The resulting linear program can be
written as

min
∑
i∈V

cixi

s.t., xi + xj ≥ 1, ∀ i ∼ j ∈ E
0 ≤ xi ≤ 1, ∀ i ∈ V

(1.4)

Suppose we have an optimal solution of the above program. We want to round this solution into a set cover
such that the cost of the cover that we produce is within a small factor of the cost of the LP solution.

The idea is to ue a simple thresholding idea: For each vertex i, if xi ≥ 0.5, then we add i to S, otherwise we
don’t include i in S.

Claim 1.1. For any solution x of linear program (1.4), the resulting set S, is a vertex cover

Proof. For a feasible solution x to the linear program, we know that xi + xj ≥ 1 ∀ i ∼ j ∈ E. This means
that for every edge i ∼ j, at least one of xi, xj is at least 0.5.Therefore, for any edge i ∼ j at least one of i, j
is in S. So, S is a vertex cover.

Claim 1.2. For any solution x of linear program (1.4) the resulting set S satisfies∑
i∈S

ci ≤ 2
∑
i

cixi = OPT LP.

This implies that the above algorithm is a 2 approximation for the vertex cover problem.

Proof. ∑
i∈S

ci =
∑

i:xi≥0.5

ci ≤
∑

i:xi≥0.5

2cixi ≤
∑
i

cixi.

Note that in the worst case xi = 0.5 for all vertices i and the above claim is tight.

Lecture 19: Linear Programming Relaxation, Duality and Applications 1-3

1.1.2 Set Cover

Given a set of n elements V = {1, 2, ..., n} and a collection of n sets {S1, S2, ..., Sn} whose union equals
the ground set V , the set cover problem is to choose a set T ⊆ [n] with a minimum cost and subject to a
constraint that T ∩ Si 6= φ, ∀i. The problem is formulated as (1.5).

min
∑
i

xici

s.t.,
∑
i:i∈Sj

xi ≥ 1, ∀j.

xi ∈ {0, 1}

(1.5)

Since the problem (1.5) is an NP-hard problem, it can be relaxed via the Linear Programming, where
the constraint xi ∈ {0, 1} is relaxed to x ≥ 0, to find an optimal point x∗lp such that the optimal value
corresponding to x∗lp is a lower bound to the the original problem. Next, a randomized rounding is used,
that is

Yi =

{
1, w.p. αxi

0, otherwise
(1.6)

The analysis of the randomized rounding

P

∑
i∈Sj

Yi = 0

 = P [Yi = 0,∀i ∈ Sj]

=
∏
i∈Sj

P [Yi = 0]

=
∏
i∈Sj

(1− αxj)

≤
∏
i∈Sj

e−αxi

≤ e
−

∑
i∈Sj

αxi

≤ e−α

If we choose α = log 2m, we have P

[∑
i∈Sj

Yi = 0

]
≤ 1

2m . So, P

[∑
i∈Sj

Yi ≥ 0

]
≥ 1 − 1

2m , which means with

union bound in every set w.p. 1
2 , we have a probability 1. Furthermore, by the Markov inequality,

E

[∑
i

ciYi

]
= α

∑
i

xici ≤ 2α ·OPT LP ≤ 2α ·OPT (1.7)

1.2 Spectral Sparsifiers

For two symmetric matrix A,B ∈ Rn×n we write

A � B

1-4 Lecture 19: Linear Programming Relaxation, Duality and Applications

iff B −A � 0, i.e., B −A is a PSD matrix. In other words, A � B iff for any vector x ∈ Rn,

xTAx ≤ xTBx

Let λ1 ≤ · · · ≤ λn be the eigenvalues of A and λ̃1 ≤ · · · ≤ λ̃n be the eigenvalues of B. It follows that if
A � B, then for all i, λi ≤ λ̃i.
Definition 1.3. Given a graph G = (V,E) and ε > 0, we say a (weighted) graph H = (V,E′) is a 1 ± ε-
spectral sparisifier of G if

(1− ε)LG � LH � (1 + ε)LG.

Ideally, we want H to be a subgraph of G which has much fewer edges than G. An immediate consequence
of the above definition is that all eigenvalues of H approximate eigenvalues of H up to multiplicative 1± ε
error.

It is also not hard to see that if H is a 1± ε-spectral sparisifer of G then it preserves the size of all cuts of G.
In particular, for a set S ⊆ V , recall 1S is the indicator vector of the set S. It follows that for a graph G,

1SLG1S =
∑
i∼j

(1Si − 1Sj)2 =
∑
i∼j

I [|{i, j} ∩ S| = 1] = 2|E(S, S)|

So, if H is a 1± ε-spectral sparsifier of G we have

(1− ε)1SLG1S ≤ 1SLH1S ≤ (1 + ε)1SLG1S ,

so the (weighted) size of every cut in H is within 1± ε multiplicative factor of the same cut in G.

Theorem 1.4 (Speilman-Srivastava). For every graph G = (V,E) and ε > 0, there is a weighted graph H
that is a subgraph of G such that H is a 1± ε-spectral sparsifier of G and that H has at most O(n log n/ε2)
many edges.

The first idea that come to mind is to construct an unbiased estimator: Let X be a random matrix defined
as follows: For every edge e ∈ E, X = Le/pe with probability pe, Then, observe that

E [X] =
∑
e

pe
Le
pe

=
∑
e

Le = LG.

So, X is an unbiased estimator. And, the main question is how to choose the probabilities such that
concentration bounds can kick in and imply X ≈ E [X].

Let us start with a simple case of a complete graph. If G is a complete graph, we can simply let pe = 1/
(
n
2

)
for all edges. It then follows that O(n log n/ε2) many samples are enough to approximate the complete
graph. However, it turns out that a uniform distribution does not necessarily work out in a general graph.
For example, if G is a Barbell graph, i.e., union of two Kn connected by an edge (see Figure 1.1), then, if
we want to down-size G to O(n log n) edges we need to let pe = O(log n)/n for all edges, but then the single
edge connecting the two complete graphs won’t be chosen with high probability. So, H is disconnected with
high probability and it cannot be a spectral sparsifier of G for any ε < 1. In the rest of this section we will
see how to choose the edge probabilities pe.

1.2.1 Reduction to Isotropic Case

First, it turns out that we can reduce the graph sparsification problem to a linear algebraic problem. First, let
us recall the generalized eigenvalue problem. In the generalized eigenvalue problem we are given a symmetric
matrix A and a PSD matrix B and we want to find

max
x

xTAx

xTBx

Lecture 19: Linear Programming Relaxation, Duality and Applications 1-5

Figure 1.1: Barbell Graph

In the special case that B is the identity matrix, the solution of the above problem is exactly the largest
eigenvector of A. We can solve the above problem by reducing it to an eigenvalue problem.

max
x

xTAx

xTBx
= max

x

xTB1/2B−1/2AB−1/2B1/2x

xTB1/2B1/2x
= max
x:y=B1/2x

yTB−1/2AB−1/2y

yT y
= max

y

yTB−1/2AB−1/2y

yT y

So, to find the solution to the generalized eigenvalue problem it is enough to find the largest eigenvector y
of the matrix B−1/2AB−1/2 and then let x = B−1/2y. Note that, here we are using the fact that B is PSD;
otherwise B−1/2 is not well defined.

Now, let us go back to the spectral sparsifier problem. Suppose H is a 1 ± ε-spectral sparsifier of G. It
follows that for all x ∈ Rn.

1− ε ≤ xTLHx

xTLGx
≤ 1 + ε

By a similar analogy, it follows that for all y,

1− ε ≤
yTL

−1/2
G LHL

−1/2
G y

yT y
≤ 1 + ε

So, the above inequality implies that the matrix L
−1/2
G LHL

−1/2
G is approximately equal to the identity matrix.

Remark 1.5. There is a technical problem here: since LG has a zero eigenvalue the inverse of LG is not well-
defined. In the above calculation, we take the inverse with respect to positive eigenvalues of G; in particular

if LG =
∑
i λiviv

T
i , we let L

−1/2
G =

∑
i:λi>0

1√
λi
viv

T
i . We ignore this fact in the rest of our calculations for

the simplicity of the argument.

Now, we reformulate the spectral sparsification problem as follows:

Theorem 1.6. Given n× n PSD matrices, E1, . . . , Em such that

m∑
i=1

Ei = I,

For any ε > 0, there is a subset S of them of size O(n log n/ε2) and a set of weights wi for each i ∈ S such
that

(1− ε)I �
∑
i∈S

wiEi � (1 + ε)I

Let us discuss how we can reduce the sparsification problem to the above theorem. Say our graph G has m
edges. For edge ei define

Ei = L
−1/2
G LeiL

−1/2
G .

1-6 Lecture 19: Linear Programming Relaxation, Duality and Applications

First, observe that each Ei is a PSD matrix, and furthermore,

m∑
i=1

Ei =

m∑
i=1

L
−1/2
G LeiL

−1/2
G = L

−1/2
G

(
m∑
i=1

Lei

)
L
−1/2
G = L

−1/2
G LGL

−1/2
G = I.

So, roughly speaking by multiplying the Laplacians of the edges of G by L
−1/2
G on both sides we are normal-

izing the space such that every direction look the same. We are reducing the graph spectral sparsification
problem to a linear algebraic problem of finding a sparsifier of the sum of PSD matrices that add up to the
identity matrix.

1.2.2 Finding the Spectral Sparsifier

Now, as before, let

X =
Ei
pi

with probability pi. Similar to before, E [X] = I. So, X is an unbiased estimator. To prove the concentration
we used the following generalization of the Chernoff bound which is known as matrix Chernoff bound

Theorem 1.7. Let X be a random n × n PSD matrix. Suppose that X � αE [X] with probability 1. Let
X1, . . . , Xk be independent copies of X, then for any ε > 0,

P
[
(1− ε)E [X] � 1

k
(X1 + · · ·+Xk) � (1 + ε)

]
≥ 1− 2ne−ε

2k/4α.

So, this says that to prove Theorem 1.6 it is enough to choose k = O(α log n/ε2) many copies of X. Finally,
to finish the proof we need to choose the probabilities pi such that α ≤ O(n).

First, suppose we let pi be uniform, i.e., pi = 1/m for all i. Then, we need to choose α such that for all i,

Ei
1/m

� αI.

But it turns out that in the worst case we have to let α = m.

The idea is to let pi ∝ Tr(Ei). Let us first find the normalizing constant: Suppose pi = β Tr(Ei). Then,∑
i

pi = β
∑
i

Tr(Ei) = β Tr

(∑
i

Ei

)
= βn

So, we should let β = 1/n. It follows that pi = β Tr(Ei) = Tr(Ei)/n.

Now, we claim that for all i,
Ei

Tr(Ei)/n
� αI

for α = n. This will complete the proof of Theorem 1.6. To show the above it is enough to show

Ei
Tr(Ei)

� I

To show this we only use the fact that all eigenvalues of Ei are in the range [0, 1] (this is true because Ei is
PSD, and

∑
j Ej = I). So, it remains to prove the above inequality. Say Ei =

∑
j λjvjv

T
j . For any arbitrary

vector x ∈ Rn,

xT
Ei

Tr(Ei)
x =

∑
j λj〈x, vj〉2∑

j λj
≤ max

j
〈x, vj〉2 ≤ ‖x‖2 = xT Ix.

Lecture 19: Linear Programming Relaxation, Duality and Applications 1-7

1.2.3 Back to Spectral Sparsifiation

In the previous section we saw that we should choose each Ei with probability Tr(Ei)/n. Translating this

back to the setting of graph sparsification; recall that for edge ei, Ei = L
−1/2
G LeiL

−1/2
G . So, we should sample

every edge e of G with probability

pe =
Tr(L

−1/2
G LeL

−1/2
G)

n

The quantity

Tr(L
−1/2
G LeL

−1/2
G) = bTe L

−1
G be

is called the effective resistance of the edge e; here for an edge e = {u, v}, be = 1u − 1v is the vector which
is +1 at one endpoint of e and −1 at the other endpoint and 0 everywhere else. It is very well understood
and there are fast algorithms to estimate it; one can also compute the inverse of the Laplacian and compute
the effective resistance of all edges immediately.

The following simple algorithm can be used to construct a 1± ε-spectral sparsifier of G:

1. For i = 1 to O(n log n/ε2)

2. Sample each edge e of G with probability pe = Tr(L
−1/2
G LeL

−1/2
G)/n. If the edge e is sampled weight

it by 1/pe.

	Optimization
	Example: Vertex Cover
	Set Cover

	Spectral Sparsifiers
	Reduction to Isotropic Case
	Finding the Spectral Sparsifier
	Back to Spectral Sparsifiation

