
CSE 521: Design and Analysis of Algorithms I Fall 2018

Common-Knowledge / Cheat Sheet

1 Randomized Algorithm

Expectation: For a random variable X with domain, the discrete set S,

E [X] =
∑
s∈S

P [X = s] s.

Linearity of Expectation: For any two Random variables X,Y ,

E [X + Y ] = E [X] + E [Y ] .

Variance: The variance of a random variable X is defined as Var(X) = E
[
(X − E [X])2

]
. The following

identity always holds,
Var(X) = E

[
X2
]
− (E [X])2.

The standard deviation of X, σ(X) =
√

Var(X).

k-wise Independence For an integer k ≥ 2, a set of random variables X1, . . . , Xn is set to be k-wise
independent if for any set S ⊆ {1, . . . , n} of size k,

E

[∏
i∈S

Xi

]
=
∏
i∈S

Xi.

Sum of Variance: Let X1, . . . , Xn be pairwise independent random variables, then

Var(X1 + · · ·+Xn) = Var(X1) + · · ·+ Var(Xn).

Markov’s Inequality Let X be a nonnegative random variable, then for any k ≥ 0,

P [X ≥ k] ≤ E [X]

k
.

Chebyshev’s Inequality For any random variable X and any ε > 0,

P [|X − E [X] | > ε] ≤ Var(X)

ε2
.

So, equivalently,

P [|X − E [X] | > kσ(X)] ≤ 1

k2
.
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Hoeffding’s Inequality Let X1, . . . , Xn be independent random variables where for all i, Xi ∈ [ai, bi].
Then, for any ε > 0,

P

[∣∣∣∣∣
n∑
i=1

Xi − E
n∑
i=1

Xi

∣∣∣∣∣ > ε

]
≤ 2 exp

(
−2ε2∑n

i=1(ai − bi)2

)

Multiplicative Chernoff Bound Let X1, . . . , Xn be independent Bernoulli random variables, i.e., for all
i, Xi ∈ {0, 1}, and let X = X1 + · · ·+Xn and µ = E [X]. Then, for any ε > 0,

P [X > (1 + ε)µ] ≤
(

eε

(1 + ε)1+ε

)µ
≤ e−

ε2µ
2+ε ,

and
P [X < (1− ε)µ] ≤ e−ε

2µ/2

McDiarmid’s Inequality Let X1, . . . , Xn ∈ X be independent random variables. Let f : Xn → R. If for
all 1 ≤ i ≤ n and for all x1, . . . , xn and x̃i,

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x̃i, xi+1, . . . , xn)| ≤ ci,

then,

P [|f(X1, . . . , Xn)− Ef(X1, . . . , Xn)| > ε] ≤ 2 exp

(
− −2ε2∑

i c
2
i

)
.

Concentration of Gaussians Let X1, . . . , Xn be independent standard normal random variables i.e., for
all i, Xi ∼ N (0, 1). Then, for any ε > 0,

P

[∣∣∣∣∣
n∑
i=1

X2
i − n

∣∣∣∣∣ > ε

]
≤ 2 exp

(
ε2

8

)

Gaussian Density Function The density function of a 1-dimensional normal random variable X ∼
N (µ, σ2) is as follows:

1√
2πσ2

e−(x−µ)2/2σ2

.

More generally, we say X1, . . . , Xn form a multivariate normal random variable when they have following
density function:

det(2πΣ)−1/2e−(x−µ)ᵀΣ−1(x−µ)/2

where Σ is the covariance matrix of X1, . . . , Xn. In particular, for all i, j,

Σi,j = Cov(Xi, Xj) = E [Xi − E [Xi]]E [Xj − E [Xj ]] = E [XiXj ]− E [Xi]E [Xj ] .

As a special case, if X1, . . . , Xn are standard normals chosen independently then Σ is just the identity matrix.

2 Spectral Algorithms

Determinant Let A ∈ Rn×n, the determinant of A can be written as follows:

det(A) =
∑
σ

n∏
i=1

Ai,σ(i) sgn(σ).



Lecture 7: Common-Knowledge / Cheat Sheet 3

where the sum is over all permutations σ of the numbers 1, . . . , n, and sgn(σ) ∈ {+1,−1}. For a permutation
σ, sgn(σ) is the parity of the number of swaps one needs to transform σ into the identity permutations. For
example, for n = 4, sgn(1, 2, 3, 4) = +1 because we need no swaps, sgn(2, 1, 3, 4) = −1 because we can
transform it to the identity just by swapping 1, 2 and sgn(3, 1, 2, 4) = +1.

Properties of Determinant

• For a matrix A ∈ Rn×n, det(A) 6= 0 if and only if the columns of A are linearly independent. Recall
that for a set of vectors v1, . . . , vn ∈ Rn, we say they are linearly independent if for any set of coefficients
c1, . . . , cn

c1v1 + c2v2 + · · ·+ cnvn = 0

only when c1 = c2 = · · · = cn = 0. In other words, v1, . . . , vn are linearly independent if no vi can be
written as a linear combination of the rest of the vectors.

• For any matrix A ∈ Rn×n, with eigenvalues λ1, . . . , λn,

det(A) =

n∏
i=1

λi

So, det(A) = 0 iff A has at least one zero eigenvalue. So, it follows from the previous fact that A has
a zero eigenvalue iff columns of A are linearly independent.

• For any two square matrices A,B ∈ Rn×n,

det(AB) = det(A) det(B).

Characteristic Polynomial For a matrix A ∈ Rn×n we write det(xI−A) for an indeterminant (variable)
x is called the characteristic polynomial of A. The roots of this polynomial are the eigenvalues of A. In
particular,

det(xI −A) = (x− λ1)(x− λ2) . . . (x− λn),

where λ1, . . . , λn are the eigenvalues of A. It follows from the above identity that for x = 0, det(−A) =∏−
i=1 λi or equivalently, det(A) =

∏n
i=1 λi.

Rank The rank of a matrix A ∈ Rn×n is the number of nonzero eigenvalues of A. More generally, the rank
of a matrix A ∈ Rm×n is the number of nonzero singular values of A. Or in other words, it is the number of
nonzero eigenvalues of AAᵀ.

PSD matrices We discuss several equivalent defnitions of PSD matrices. A symmetric matrix A ∈ Rn×n
is positive semidefnite (PSD) iff

• All eigenvalues of A are nonnegative

• A can be written as BBᵀ for some matrix B ∈ Rn×m.

• xᵀAx ≥ 0 for all vectors x ∈ Rn.

• det(AS,S) ≥ 0 for all S ⊆ {1, . . . , n} where AS,S denotes the square submatrix of A with rows and
columns indexed by S.
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The following fact about PSD matrices is immediate. If A � 0 is an n × n matrix, then for any matrix
C ∈ Rk×n,

CACT � 0.

This is because for any vector x ∈ Rk,

xTCACTx = (CTx)TA(CTx) = yTAy ≥ 0,

where y = CTx.

For two symmetric A,B ∈ Rn we write A � B if and only if B −A � 0. In other words, A � B if and only
if for any vector x ∈ Rn,

xTAx ≤ xTBx.
Let λ1, . . . , λn be the eigenvalues of A, and λ̃1, . . . , λ̃n be the eigenvalues of B. If A � B, then for all i,
λi ≤ λ̃i.

Nonsymmetric Matrices Any matrix A ∈ Rm×n (for m ≤ n) can be written as

A =

m∑
i=1

σiuiv
ᵀ
i

where

• u1, . . . , um ∈ Rm form an orthonormal set of vectors. These are called left singular vectors of A and
they have the property, uiA = σivi. These vectors are the eigenvectors of the matrix AAᵀ.

• v1, . . . , vm ∈ Rn form an orthonormal set of vectors. Note that these vectors do not necessarily span
the space. These vectors are eigenvectors of the matrix AᵀA.

• σ1, . . . , σm are called the singular values of A. They are always real an nonnegative. In fact they are
eigenvalues of the PSD matrix AAᵀ.

Rotation Matrix A matrix Rn×n is a rotation matrix iff ‖Rx‖2 = ‖x‖2 for all vectors x ∈ Rn. In other
words, R as an operator preserves the norm of all vectors. Next, we discuss equivalent definitions of R being
a rotation matrix. R is a rotation matrix iff

• RRᵀ = I.

• All singular values of R are 1.

• Columns of R form an orthonormal set of vectors in Rn.

Projection Matrix A symmetric matrix P ∈ Rn×n is a projection matrix iff

• It can be written as P =
∑k
i=1 viv

ᵀ
i for some 1 ≤ k ≤ n.

• All eigenvalues of P are 0 or 1.

• PP = P .

It follows from the spectral theorem that there is a unique projection matrix of rank n and that is the identity
matrix. In general a projection matrix projects any given vector x to the linear subspace corresponding to
span of the vectors v1, . . . , vk.
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Trace For a square matrix A ∈ Rn×n we write

Tr(A) =

n∑
i=1

Ai,i

to denote the sum of entries on the diagonal of A. Next, we discuss several properties of the trace.

• Trace of A is equal to the sum of all eigenvalues of A.

• Trace is a linear operator, for any two square matrices A,B ∈ Rn×n

Tr(A+B) = Tr(A) + Tr(B)

Tr(tA) = tTr(A),∀t ∈ R.

• It follows by the previous fact that for a random matrix X, E [Tr(X)] = Tr(E [X]).

• For any pair of matrices A ∈ Rn×k and B ∈ Rk×n such that AB is a square matrix we have

Tr(AB) = Tr(BA).

So, in particular, for any vector v ∈ Rn,

Tr(vvᵀ) = Tr(vᵀv) = ‖v‖2.

• For any matrix A ∈ Rm×n

‖A‖2F =

m∑
i=1

n∑
j=1

A2
i,j = Tr(AAᵀ).

Matrix Chernoff Bound Let X be a random n× n PSD matrix. Suppose that X � αE [X]with proba-
bility 1 for some α ≥ 0. Let X1, . . . , Xk be independent copies of X. Then, for any 0 < ε < 1,

P
[
(1− ε)E [X] � 1

k
(X1 + · · ·+Xk) � (1 + ε)E [X]

]
≥ 1− 2ne−ε

2k/4α.

3 Optimization

Convex Functions A function f : Rn → R is convex on a set S ⊆ Rn if for any two points x, y ∈ S, we
have

f

(
x+ y

2

)
≤ 1

2
(f(x) + f(y)).

We say f is concave if for any such x, y ∈ S, we have

f (f(αx+ (1− α)y) ≥ αf(x) + (1− α)f(y),

for any 0 ≤ α ≤ 1. There is an equivalent definition of convexity: For a function f : Rn → R, the Hessian of
f , ∇2f is a n× n matrix defined as follows:

(∇2f)i,j = ∂xi∂xjf
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for all 1 ≤ i, j ≤ n. We can show that f is convex over S if and only if for all a ∈ S,

∇2f
∣∣∣
x=a
� 0.

For example, consider the function f(x) = xTAx for x ∈ Rn and A ∈ Rn×n. Then, ∇2f = A. So, f is
convex (over Rn) if and only if A � 0.

For another example, let f : R→ R be f(x) = xk for some integer k ≥ 2. Then, f ′′(x) = k(k − 1)xk−2. If k
is an even integer, f ′′(x) ≥ 0 over all x ∈ R, so f is convex over all real numbers. On the other hand, if k is
an odd integer then f ′′(x) ≥ 0 if and only if x ≥ 0. So, in this f is convex only over non-negative reals.

Similarly, f is concave over S, if ∇2f
∣∣∣
x=a
� 0 for all a ∈ S. For example, x 7→ log x is concave over all

positive reals.

Convex set We say a set S ⊆ Rn is convex if for any pair of points x, y ∈ S, the line segment connecting
x to y is in S.

For example, let f : Rn → R be a convex function over a set S ⊆ Rn. Let t ∈ R, and define

T = {x ∈ Rn : f(x) ≤ t}.

Then, T is convex. This is because if x, y ∈ T , then for any 0 ≤ α ≤ 1,

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) ≤ αt+ (1− α)t = t

where the first inequality follows by convexity of f . So, αx+ (1− α) ∈ T and T is convex.

Norms are Convex functions A norm ‖ · ‖ is defined as a function that maps Rn to R and satisfies the
following three properties,

i) ‖x‖ ≥ 0 for all x ∈ Rn,

ii) ‖αx‖ = α‖x‖ for all α ≥ 0 and x ∈ Rn,

iii) Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ Rn.

It is easy to see that any norm function is a convex function: This is because for any x, y ∈ Rn, and
0 ≤ α ≤ 1,

‖αx+ (1− α)y‖ ≤ ‖αx‖+ ‖(1− α)y‖ = α‖x‖+ (1− α)‖y‖.

4 Useful Inequalities

• For real numbers, a1, . . . , an and nonnegative reals b1, . . . , bn,

min
i

ai
bi
≤ a1 + · · ·+ an
b1 + · · ·+ bn

≤ max
i

ai
bi

• Cauchy-Schwartz inequality: For real numbers a1, . . . , an, b1, . . . , bn,

n∑
i=1

ai · bi ≤
√∑

i

a2
i ·
√∑

i

b2i
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There is an equivalent vector-version of the above inequality. For any two vectors u, v ∈ Rn,

n∑
i=1

ui · vi = 〈u, v〉 ≤ ‖u‖ · ‖v‖

The equality in the above holds only when u, v are parallel.

• AM-GM inequality: For any n nonnegative real numbers a1, . . . , . . . , an,

a1 + · · ·+ an
n

≥ (a1 · a2 · . . . an)1/n.

• Relation between norms: For any vector a ∈ Rn,

‖a‖2 ≤ ‖a‖1 ≤
√
n · ‖a‖2

The right inequality is just Cauchy-Schwartz inequality.

• For any real numbers a1, . . . , an,

(|a1|+ · · ·+ |an|)2 ≤ n(a2
1 + · · ·+ a2

n).

This is indeed a special case of Cauchy-Schwartz inequality.

• For any real number x, 1− x ≤ e−x. In this course we use 1− x ≈ e−x to simplify calculations.
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