4.1 Hash Functions

Suppose we want to maintain a data structure of a set of elements x_1, \ldots, x_m of a universe U, e.g., images, that can perform insertion/deletion/search operations. A simple strategy would be to have one bucket for every possible image, i.e., each element of U, and indicate in each bucket whether or not the corresponding image appeared. Unfortunately, $|U|$ can be much much larger than the space available in our computers; for example, if U represents the set of all possible images, $|U|$ is as big as $2^{1000000}$.

Instead, one may use a hash function. A hash function $h : U \rightarrow [B]$ maps elements of U to integers in $[B]$. For every element of the sequence we mark $h(x_i)$ with x_i. When a query x arrives, we go to the cell $h(x)$ if no element is stored there, x is not in our sequence. Otherwise, we go over all elements stored in $h(x)$ and see if any of them is equal to x. Observe that the search operation thus depends on the number of elements stored in $h(x)$. Ideally, we would like to have a hash function that stores at most one element in $0 \leq i \leq B - 1$. Fix a function h. Observe that h maps $1/B$ fraction of all elements of U to the same number $i \in [B]$. Therefore, the search operation in the worst case is very slow.

We can mitigate this problem by choosing a hash function h uniformly at random from the family of all functions that map U to B; let $H = h : U \rightarrow [B]$, and let $h \sim H$ chosen uniformly at random. Now, if the length of the sequence $m \ll B$, then, by the birthday paradox phenomenon, with high probability, no two elements of the sequence map to the same cell. In other words, there is no collisions. However, observe that H has $|U|^B$ many functions, so even describing h requires $\log |U|^B = |U| \log B$ bits of memory. Recall that we assumed $|U| \gg 2^{1000000}$ so we cannot efficiently represent h. Instead, we are going to work with smaller much families of functions say H^*; such a family can only guarantee weaker notions of independence, but because $|H^*| \ll |H|$, it is much easier to describe a randomly chosen function from H^*.

4.2 2-Universal Functions

In this section, we describe a family hash functions that only preserve pairwise-independent. Let p be a prime number, and let $H = \{ h : [p] \rightarrow [p], h(x) = ax + b \mod p \}$. Observe that any function $h_{a,b} \in H$ can be represented in $O(\log p)$ bits of memory just by recording the $a, b \in [p]$. Next, we show that a uniformly random function $h \sim H$ is pairwise independent.

Lemma 4.1. For any $x, y, c, d \in [p] x \neq y, P[h(x) = c, h(y) = d] = \frac{1}{p^2}$

Proof. Suppose for some $x \neq y$, $h(x) \equiv c$, and $h(y) \equiv d$.

Equivalently, we can write,

$$ax + b \equiv c \mod p,$$

and

$$ay + b \equiv d \mod p.$$
Using the laws of modular equations, we can write,

\[a(x - y) \equiv (c - b) - (d - b) \mod p. \]

Since \(p \) is a prime, any number \(1 \leq z \leq p-1 \) has a multiplicative inverse, i.e., there is a number \(1 \leq z^{-1} \leq p-1 \) such that \(p \cdot z^{-1} \equiv 1 \mod p \). Since \(x \neq y, x - y \neq 0 \). Therefore, it has a multiplicative inverse, and we can write,

\[a = (x - y)^{-1}(c - d) \mod p, \]

which gives,

\[b = d - ay \mod p. \]

In words, having \(x, y, c, d \) uniquely defines \(a, b \). Since there are \(p^2 \) possibilities for \(a, b \), we get

\[\mathbb{P}[h(x) = c, h(y) = d] = 1/p^2. \]

For our applications in estimating \(F_0 \), we first need to choose a prime number \(p > n \). Then, we can use a hash function \(h : [n] \rightarrow [B] \) where for any \(0 \leq x \leq n-1 \), \(h(x) = ax + b \mod p \mod B \). It is easy to see that such a function is almost pairwise independent which is good enough for our application in estimating \(F_0 \).

We can extend the above construction to a family of \(k \)-wise independence hash functions. We say a hash function \(h : [p] \rightarrow [p] \) is \(k \)-wise independent if for all distinct \(x_0, \ldots, x_{k-1} \),

\[\mathbb{P}[\forall i, h(x_i) = c_i] = \frac{1}{p^k}. \]

Such a hash function \(h \) can be constructed by choosing \(a_0, a_1, \ldots, a_{k-1} \) uniformly and independently from \([p]\) and letting

\[h(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \ldots + a_1x + a_0. \]

We are not proving that this will give a \(k \)-wise independence hash function. Instead, we just give the high-level idea. Let \(h \) be a 4-wise independent hash function and let \(x_0, x_1, x_2, x_3 \in [p] \) be distinct and \(c_0, c_1, c_2, c_3 \in [p] \) we need to show that there is a unique set \(a_0, a_1, a_2, a_3 \) for which \(h(x_i) = c_i \) for all \(i \). To find \(a_0, a_1, a_2, a_3 \) it is enough to solve the following system of linear equations.

\[
\begin{bmatrix}
 x_3^0 & x_2^0 & x_1^0 & 1 & a_3 \\
 x_3^1 & x_2^1 & x_1^1 & 1 & a_2 \\
 x_3^2 & x_2^2 & x_1^2 & 1 & a_1 \\
 x_3^3 & x_2^3 & x_1^3 & 1 & a_0 \\
\end{bmatrix}
\begin{bmatrix}
 c_0 \\
 c_1 \\
 c_2 \\
 c_3 \\
\end{bmatrix}
= \begin{bmatrix}
 \end{bmatrix}.
\]

It turns out that the Matrix in the LHS has a nonzero determinant of \(x_0, x_1, x_2, x_3 \) are distinct. In such a case, it is invertible, and we can use the inverse to uniquely define \(a_0, a_1, a_2, a_3 \).

4.3 \(F_2 \) Moment

Before designing a streaming algorithm that estimates \(F_2 \), let us revisit the random walk example that we had a few lectures ago. Let \(X = \sum_i X_i \) where for each \(i \),

\[X_i = \begin{cases}
+1, & \text{w.p. } \frac{1}{2} \\
-1, & \text{w.p. } \frac{1}{2}
\end{cases} \]
Using the Hoeffding bound, we previously showed that for any \(c > 2 \), \(\Pr[X \leq c\sqrt{n}] \geq 1 - \frac{\epsilon^2}{2} \). Is this bound tight? Can we show that \(X \geq \Omega(n) \) with a constant probability? The answer yes. More generally it follows from the central limit theorem. But instead of using such a heavy tool there is a more elementary argument that we can use. To show that \(X \geq \Omega(\sqrt{n}) \) with a constant probability, it is enough to show that \(\mathbb{E}[X^2] \geq n \).

\[
\mathbb{E}[X^2] = \mathbb{E}\left[\sum_{i,j} X_i X_j \right] = \sum_{i,j} \mathbb{E}[X_i X_j] = \sum_i \mathbb{E}[X_i^2] = n,
\]

where in the second to last equality we use that \(X_i, X_j \) are independent, so \(\mathbb{E}[X_i X_j] \neq 0 \) only when \(i = j \), and in the last equality we use \(\mathbb{E}[X_i^2] \) is 1.

Now back to estimating \(F_2 \). We want to use a similar idea. Let \(x_1, x_2, \ldots, x_m \in [n] \) be the input sequence. For each \(i \in [n] \) let \(m_i := \#\{x_j = i\} \). Recall that

\[
F_2 := \sum_{i=1}^{n} m_i^2.
\]

Let \(h : [n] \to \{+1, -1\} \) where for any \(i \in [n] \),

\[
h(i) = \begin{cases} +1, & \frac{1}{2} \\ -1, & \frac{1}{2} \end{cases}
\]

chosen independently. Consider the following algorithm: Start with \(Y = 0 \). After reading each \(x_i \), let \(Y = Y + h(x_i) \). Return \(Y^2 \).

Before, analyzing the algorithm let us study two extreme cases. First assume that \(x_1 = x_2 = \cdots = x_m \). Then, \(Y = m, Y^2 = m^2 \) as desired. Now, assume that \(x_1, x_2, dots, x_m \) are mutually distinct, then the distribution of \(Y \) is the same as a random walk of length \(m \); so by the previous observation \(Y \approx \sqrt{n} \) and \(Y^2 \approx n \) as desired.

Lemma 4.2. \(Y^2 \) is an unbiased estimator of \(F_2 \), i.e., \(\mathbb{E}[Y^2] = F_2 \).

Proof. First, observe that

\[
Y = \sum_i m_i h(i).
\]

Therefore,

\[
\mathbb{E}[Y^2] = \mathbb{E}\left[\sum_{i,j} m_i m_j h(i) h(j) \right] = \sum_{i,j} m_i m_j \mathbb{E}[h(i) h(j)]
= \sum_i m_i^2 \mathbb{E}[h(i)^2] = \sum_i m_i^2,
\]

where the second to last equality uses that \(h(i) \) is independent of \(h(j) \) for all \(i \neq j \). \(\square \)

Now, all we need to do is to estimate the expectation of \(Y^2 \) within a \(1 \pm \epsilon \) factor. By Chebyshev’s inequality all we need to show is that \(Y^2 \) has a small variance.
Lemma 4.3. $\text{Var}(Y^2) \leq 2\mathbb{E} \left[Y^4 \right]$.

Proof. First, we calculate $\mathbb{E} \left[Y^4 \right]$. The idea is similar to before, we just use the independence of $h(i)$’s.

\[
\mathbb{E} \left[Y^4 \right] = \mathbb{E} \left[\sum_{i,j,k,l} m_i m_j m_k m_l h(i)h(j)h(k)h(l) \right] = \sum_{i,j,k,l} \mathbb{E} [h(i)^4] + 6 \sum_{i < j} \mathbb{E} [h(i)^2 h(j)^2]
\]

To see the last equality, observe that for any 4-tuple, i, j, k, l, $\mathbb{E} [h(i)h(j)h(k)h(l)]$ is nonzero only if each integer in $[m]$ shows up an even number. In other words, there are only two cases where $\mathbb{E} [h(i)h(j)h(k)h(l)]$ is nonzero: (i) when $i = j = k = l$, (ii) when two of these four numbers are equal and the other two are also equal.

Since for each i, $\mathbb{E} [h(i)^2] = \mathbb{E} [h(i)^4] = 1$, we have

\[
\mathbb{E} \left[Y^4 \right] = \sum_{i=1}^{n} m_i^4 + 6 \sum_{i < j} m_i^2 m_j^2.
\]

Now, using Lemma 4.2, we can write,

\[
\text{Var}(Y^2) = \mathbb{E} \left[Y^4 \right] - \mathbb{E} \left[Y^2 \right]^2 = 4 \sum_{i < j} m_i^2 m_j^2 \leq 2\mathbb{E} \left[Y^2 \right]^2
\]

as desired. \qed

Now, all we need to do is to use independent samples of Y^2 to reduce the variance. Suppose we take k independent samples of Y^2 using k independently chosen hash functions h_1, \ldots, h_k, i.e., we run the following algorithm: Start with $Y_1 = Y_2 = \cdots = Y_k = 0$. After reading x_i, let $Y_j = Y_j + h(x_i)$ for all $1 \leq j \leq k$. Then,

\[
\text{Var} \left(\frac{1}{k} \left(Y_1^2 + \cdots + Y_k^2 \right) \right) = \frac{1}{k} \text{Var}(Y^2).
\]

Therefore, by the Chebyshev’s inequality, we can write,

\[
P \left(\left| \frac{1}{k} \sum_i Y_i^2 - \mathbb{E} \left[Y^2 \right] \right| \geq \epsilon \mathbb{E} \left[Y^2 \right] \right) \leq \frac{\text{Var} \left(\frac{1}{k} \sum_{i=1}^{k} Y_i^2 \right)}{\epsilon^2 \mathbb{E} \left[Y^2 \right]^2} = \frac{\frac{1}{k} \mathbb{E} \left[Y^2 \right]^2}{\epsilon^2 \mathbb{E} \left[Y^2 \right]^2} = \frac{2\epsilon^2}{k}
\]

So, $k = \frac{2}{\epsilon^2}$ many samples is enough to approximate F_2 within $1 + \epsilon$ factor with probability at least $\frac{9}{10}$. Note that in the above construction we assumed that $h(.)$ assigns independent values to all integers in $[n]$. But, it can be seen from the proof that we only used 4-wise independence. The only place that we used independence was to show that $\mathbb{E} [h(i)h(j)h(k)h(l)] = 0$ when i, j, k, l are mutually distinct. That is of course true even if $h(.)$ is just a 4-wise independent function. Taking that into account we can run the above algorithm with space $O(\log(n)/\epsilon^2)$.

In addition, we can turn the above probabilistic guarantee into $1 - \delta$ probability using $\log \frac{4}{\delta^2}$ many samples. We refrain from giving the details. For more detailed discussion we refer to [AMS96].
References