Maximum weight matching

- Bipartite graphs are tremendously useful for modeling:
 - Jobs and machines
 - Employers, employers
 - Ads with ad slots
 - Men with women

Matching

• Set of edges with no common endpoints.

 Maximum weight matching: maximum sum of weights on edges.

Max weighted matching problem

 Given a weighted bipartite graph, how can we find a maximum weight matching efficiently?

Ascending auction algorithm for integer weights (n by m)

Fix bid increment

prices on items:

Initially prices 0, and matching empty

As long as matching not maximum,

Pick unmatched bidder i, have him bid

on item j in

If j unmatched, then M(i) := j,

else, say M(k)=j,

Remove (k,j) from matching and add (I,j), i.e. M(i) := j

Fix bid increment prices on items:
Initially prices 0, and matching empty
As long as matching not maximum,
Pick unmatched bidder i, have him bid on item j in

If j unmatched, then M(i) := j, else, say M(k)=j, Remove (k,j) from matching and add (l,j), i.e. M(i) := j