Hashing

• One of the most important data structures, with numerous applications to both algorithms and complexity
• Applications:
 Dictionary data structure

Dictionaries

• Large universe of possible keys – universe size \(U \). Generally \(U \)
• Storing a small subset \(S \) of \(U \): \(|S| = n\)
• Operations supported
 – Insert(k) – add the key k to the set S
 – Find (k) – is the key k in S?
 – Delete (k) – remove the key k from S.
• Sometimes only care about the static case.

Hashing

• One of the most important data structures, with numerous applications to both algorithms and complexity
• Applications:
 Dictionary data structure
 Load balancing
 Cryptography

Next few lectures

• What we want from a hash function
• Constructions (universal hashing)
• Applications and analyses:
 – Perfect Hashing
 – Linear probing
 – Bloom Filters
 – Hashing for load balancing (Power of two choices, Cuckoo hashing)
 – Hashing for document similarity (min-hashing, locality sensitive hashing)
 – Applications to streaming

Dictionaries via hashing

• Universe size \(U \), \(|S| = n\)
• Define a hash function \(h: U \rightarrow [m] \)
• Store each key \(x \) in location \(h(x) \).
• What to do about collisions?

What do we want from hash function

• small number of collisions
• \(m \) small, specifically \(O(n) \).
• hash function easy to describe (small representation)
• hash function easy to compute
The importance of being random

- For any fixed hash function there is a set of bad keys.
 - Example: \(h(x) = x \mod m \)
- If input comes from such a subset, disaster!

Input data is not random!
So good hash functions must be random!

Suppose hash function \(h \) is random

Claim: If \(h \) is random, then the expected time to perform any sequence of \(m \) operations is \(O(m) \).

Assume that all items that hash to the same location are stored in a linked list from that location.

Claim: If \(h \) is random, then the expected time to perform any sequence of \(m \) operations is \(O(m) \).

Claim: If \(h \) is random, then the expected time to perform any sequence of \(m \) operations is \(O(m) \).

Conclusion: random hash function is great!!

But useless... except as inspiration...

[Carter, Wegman]: We didn’t use very much about the randomness.

[CW] simple but brilliant idea

- Choose \(h \) at random, but from a small space of possible hash function.
- Let \(H \) be a class of functions mapping \(U \) to \([m] \). We say that \(H \) is universal if for any \(x, y \) in \(U \) (not equal), and \(h \) chosen uniformly at random from \(H \),
• Claim: If h is universal, then the expected time to perform any sequence of m operations is $O(m)$.

• Question: how to construct small, efficient, universal family of hash functions?

Your turn: show the following family of hash functions is universal.

• Take a $u \times k$ matrix A and fill it with random bits. ($2^k=m$)
• For x in U, view it as a u-bit vector and define $h(x) := Ax$, where calculations are done mod 2.

Can we create a collision-free hash table?

Perfect Hashing [FKS]

• How can we use these ideas to create a hash-table based data structure, where the worst-case time to perform an operation is constant.

• Consider static case

Linear probing
Linear probing and k-wise universal hash functions

- Analysis we just did was for random hash functions..
- Universal hash functions bad
- Something in between?
- k- (strongly) universal hash functions

Linear probing

- Analysis we just did was for random hash functions..
- Universal hash functions bad
- Similar results can be shown with 5-independent hash functions, but not 4-independent!