Hashing

* One of the most important data structures,
with numerous applications to both
algorithms and complexity

* Applications:

Dictionary data structure

3/30/15

Dictionaries

* Large universe of possible keys — universe size
U. Generally U
* Storing a small subset Sof U: |S|=n
* Operations supported
— Insert(k) —add the key k to the set S
— Find (k) —is the key k in S?
— Delete (k) — remove the key k from S.

Sometimes only care about the static case.

Hashing

* One of the most important data structures,
with numerous applications to both
algorithms and complexity

* Applications:

Dictionary data structure
Load balancing
cryptography

Next few lectures

* What we want from a hash function
Constructions (universal hashing)
* Applications and analyses:

— Perfect Hashing

— Linear probing

— Bloom Filters

— Hashing for load balancing (Power of two choices,
Cuckoo hashing)

— Hashing for document similarity (min-hashing, locality
sensitive hashing)

— Applications to streaming

Dictionaries via hashing

* Universe size U, |S|=n

* Define a hash function h: U 2 [m]
« Store each key x in location h(x).

* What to do about collisions?

What do we want from hash function

* small number of collisions
* m small, specifically O(n).

* hash function easy to describe (small
representation)

* hash function easy to compute

3/30/15

The importance of being random

* For any fixed hash function there is a set of
bad keys.
— Example: h(x) =x mod m

¢ If input comes from such a subset, disaster!

Input data is not random!
So good hash functions must be random!

Suppose hash function h is random

Claim: If h is random, then the expected time to
perform any sequence of m operations is O(m).

Assume that all items that hash to the same
location are stored in a linked list from that
location.

Claim: If h is random, then the expected time to
perform any sequence of m operations is O(m).

Claim: If h is random, then the expected time to
perform any sequence of m operations is O(m).

* Conclusion: random hash function is great!!

* But useless... except as inspiration...

¢ [Carter, Wegman]: We didn’t use very much
about the randomness.

[CW] simple but brilliant idea

* Choose h at random, but from a small space
of possible hash function.

* Let H be a class of functions mapping U to [m].

We say that H is universal if for any x, y in U
(not equal), and h chosen uniformly at
random from H,

* Claim: If h is universal, then the expected time
to perform any sequence of m operations is
O(m).

¢ Question: how to construct small, efficient,
universal family of hash functions?

3/30/15

* Let p be aprime > |U]|. The following family is
universal:

Your turn: show the following family
of hash functions is universal.

* Take a u by k matrix A and fill it with random bits.
(2k=m)
e Forxin U, view it as a u-bit vector and define
h(x) := Ax,
where calculations are done mod 2.

Can we create a collision-free hash
table?

Perfect Hashing [FKS]

* How can we use these ideas to create a hash-
table based data structure, where the worst-
case time to perform an operation is constant.

* Consider static case

Linear probing

3/30/15

Linear probing and k-wise universal
hash functions

Analysis we just did was for random hash

functions..

Universal hash functions bad

Something in between?

k- (strongly) universal hash functions

Linear probing

* Analysis we just did was for random hash
functions..

* Universal hash functions bad

* Similar results can be shown with 5-
independent hash functions, but not 4-
independent!

