
1!

1

Bloom Filters

n  Given a set S = {x1,x2,x3,…,xn} on a
universe U, want to answer queries of
the form:

 Is y∈S ?

n  Bloom filter provides an answer in
n  “Constant” time (to hash).
n  Small amount of space.
n  But with small probability of a false positive

n  Particularly useful when the answer is
usually NO

2

Bloom Filters
Start with an m bit array, filled with 0s.

Hash each item xj in S k times. If hi (xj) = a, set B[a] = 1.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0 B

To check if y is in S, check B at hi(y). All k values must be 1.

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0 B

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0 B
Possible to have false positive; all k values are 1, but y is not in S.

n items m = cn bits k hash functions

3

False Positive Probability

n items m = cn bits k hash functions

4

False Positive Probability

n  Pr(specific bit of filter is 0) is
 p’ ≡ (1-1/m)kn ≈ e-kn/m ≡ p (p’≤p)

n  If β is fraction of 0 bits in the filter then false
positive probability for a new element is
 (1- β)k ≈ (1- p’)k ≈ (1- p’)k= (1-e-kn/m)k

n  Find optimal at k = (ln 2) m/n by calculus.
n  So optimal false positive prob is about (0.6185)m/n

n items m = cn bits k hash functions

5

Graph of (1-e-k/c)k for c=8

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0 1 2 3 4 5 6 7 8 9 10

Hash functions

Fa
ls

e
po

si
tiv

e
ra

te m/n = 8

Opt k = 8 ln 2 = 5.45...

n items m = cn bits k hash functions
6

Applications

n  Any scenario where space and
efficiency are super important.

n  Used a lot in networking
n  Google BigTable uses Bloom filters to

reduce the disk lookups for non-existent
rows or columns.
n  Avoiding costly disk lookups considerably

increases the performance of a database
query operation

2!

7

Handling Deletions

n  Bloom filters can handle insertions, but
not deletions.

n  If deleting xi means resetting 1’s to 0’s,
then deleting xi will “delete” xj.

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0 B

xi xj

8

Counting Bloom Filters

Start with an m bit array, filled with 0s.

Hash each item xj in S k times. If Hi(xj) = a, add 1 to B[a].

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B

0 3 0 0 1 0 2 0 0 3 2 1 0 2 1 0 B
To delete xj decrement the corresponding counters.

0 2 0 0 0 0 2 0 0 3 2 1 0 1 1 0 B
Can obtain a corresponding Bloom filter by reducing to 0/1.

0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 B

9

Counting Bloom Filters: Overflow

n  Must choose counters large enough to
avoid overflow
n  e.g. for c=8 choose 4 bits per counter
n  Average load using k = (ln 2) m/n counters is

ln 2.
n  Probability a counter has load at least 16 is

approximately e-ln 2 (ln 2)16/16! which is
roughly 6.78x10-17

10

Bloom filter numerous variations

n  See papers on website.

