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Bloom Filters 

n  Given a set S = {x1,x2,x3,…,xn} on a 
universe U, want to answer queries of 
the form: 

                Is y∈S ? 
 

n  Bloom filter provides an answer in 
n  “Constant” time (to hash). 
n  Small amount of space. 
n  But with small probability of a false positive 

n  Particularly useful when the answer is 
usually NO 
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Bloom Filters 
Start with an m bit array, filled with 0s. 

Hash each item xj in S k times.  If hi (xj) = a, set B[a] = 1. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0 B

To check if y is in S, check B at hi(y).  All k values must be 1. 

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0 B

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0 B
Possible to have false positive;  all k values are 1, but y is not in S. 

n items                          m = cn bits                     k hash functions 
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False Positive Probability 

n items         m = cn bits          k hash functions 
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False Positive Probability 

n  Pr(specific bit of filter is 0) is 
              p’ ≡ (1-1/m)kn ≈ e-kn/m ≡ p     (p’≤p) 

n  If β is fraction of 0 bits in the filter then false 
positive probability for a new element is  
  (1- β)k  ≈  (1- p’)k   ≈ (1- p’)k= (1-e-kn/m)k 

  

n  Find optimal at k = (ln 2) m/n by calculus. 
n  So optimal false positive prob is about (0.6185)m/n 

n items         m = cn bits          k hash functions 
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Graph of (1-e-k/c)k  for c=8 
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Opt k = 8 ln 2 = 5.45... 

n items               m = cn bits              k hash functions 
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Applications 

n  Any scenario where space and 
efficiency are super important. 

n  Used a lot in networking 
n  Google BigTable uses Bloom filters to 

reduce the disk lookups for non-existent 
rows or columns.  
n  Avoiding costly disk lookups considerably 

increases the performance of a database 
query operation 
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Handling Deletions 

n  Bloom filters can handle insertions, but 
not deletions. 

n  If deleting xi means resetting 1’s to 0’s, 
then deleting xi will “delete” xj.   

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0 B 

xi    xj 
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Counting Bloom Filters 

Start with an m bit array, filled with 0s. 

Hash each item xj in S k times.  If Hi(xj) = a, add 1 to B[a]. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B 

0 3 0 0 1 0 2 0 0 3 2 1 0 2 1 0 B 
To delete xj decrement the corresponding counters. 

0 2 0 0 0 0 2 0 0 3 2 1 0 1 1 0 B 
Can obtain a corresponding Bloom filter by reducing to 0/1. 

0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 B 
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Counting Bloom Filters: Overflow 

n  Must choose counters large enough to 
avoid overflow 
n  e.g. for c=8 choose 4 bits per counter 
n  Average load using k = (ln 2) m/n counters is 

ln 2.  
n  Probability a counter has load at least 16 is 

approximately  e-ln 2 (ln 2)16/16!  which is 
roughly 6.78x10-17 
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Bloom filter numerous variations 

n  See papers on website. 


