Bloom Filters

- Given a set \(S = \{x_1, x_2, x_3, \ldots, x_n\} \) on a universe \(U \), want to answer queries of the form: Is \(y \in S \)?
- Bloom filter provides an answer in "Constant" time (to hash).
- Small amount of space.
- But with small probability of a false positive
- Particularly useful when the answer is usually NO

Bloom Filters

Start with an \(m \) bit array, filled with 0s.
Hash each item \(x_j \) in \(S \) \(k \) times. If \(h_i(x_j) = a \), set \(B[a] = 1 \).

False Positive Probability

- \(\Pr(\text{specific bit of filter is 0}) \) is \(p' \equiv (1-1/m)^m \equiv e^{-m} \equiv p \) \((p' < p) \)
- If \(\beta \) is fraction of 0 bits in the filter then false positive probability for a new element is \((1-\beta)^k = (1-p')^k \approx (1-e^{-m})^k \)
- Find optimal at \(k = (\ln 2) m/n \) by calculus.
- So optimal false positive prob is about \((0.6185)^m/\sqrt{n} \)

Applications

- Any scenario where space and efficiency are super important.
- Used a lot in networking
- Google BigTable uses Bloom filters to reduce the disk lookups for non-existent rows or columns.
- Avoiding costly disk lookups considerably increases the performance of a database query operation
Handling Deletions

- Bloom filters can handle insertions, but not deletions.
- If deleting \(x_i \) means resetting 1's to 0's, then deleting \(x_i \) will "delete" \(x_j \).

Counting Bloom Filters

- Start with an \(m \) bit array, filled with 0's.
- Hash each item \(x_j \) in \(S \) \(k \) times.
- If \(H_i(x_j) = a \), add 1 to \(B[a] \).
- To delete \(x_j \), decrement the corresponding counters.
- Can obtain a corresponding Bloom filter by reducing to 0/1.

Counting Bloom Filters: Overflow

- Must choose counters large enough to avoid overflow
 - e.g. for \(c=8 \) choose 4 bits per counter
 - Average load using \(k = (\ln 2) \frac{m}{n} \) counters is \(\ln 2 \).
 - Probability a counter has load at least 16 is approximately \(e^{\ln 2} (\ln 2)^{16}/16! \) which is roughly \(6.78 \times 10^{-17} \)

Bloom filter numerous variations

- See papers on website.