i Bloom Filters

= Given a set S = {x;,X,,X5,....X,} on a
universe U, want to answer queries of
the form:

IsyeS ?

= Bloom filter provides an answer in
= “Constant” time (to hash).
= Small amount of space.
= But with small probability of a false positive

= Particularly useful when the answer is
usually NO

i Bloom Filters

Start with an m bit array, filled with 0s.
BloJoJoJofoofoofoJofofofofo]o]0]

Hash each item x; in S k times. If h;(x;) = a, set B[a] = 1.
Blof1]ofo[+]of1]ofof+[1]1]o[1[1]0]

To check ify is in S, check B at hi(y). All k values must be 1.
Blof1]ofof1]of1]ofoft[1]1]of1]1]0]

Possible to have false positive; all k values are 1, but y is notin S.
Blof1]ofof1]of1]ofof+[1]1]o[1[1]0]

n items m = cn bits k hash functions

| False Positive Probability

n items m = cn bits k hash functions

| False Positive Probability

= Pr(specific bit of filter is 0) is
p’ =(1-1/m)n=ekim=p  (p’<p)
= If B is fraction of 0 bits in the filter then false
positive probability for a new element is
(1-B)k = (1-p' )k =(1-p’ k= (1-eknim)k

= Find optimal at k = (In 2) m/n by calculus.
= So optimal false positive prob is about (0.6185)™"

n items m = cn bits k hash functions

# Graph of (1-e*°)k for c=8
0.1

0.09 1
0.08
0.07
0.06
0.05
0.04 1
0.03 1
0.02
0.01 A

m/n=8

Optk=81In2=545...

False positive rate

o 1 2 3 4 5 6 7 8 9 10
Hash functions

nitems m = cn bits k hash functions
5

i Applications

= Any scenario where space and
efficiency are super important.

= Used a lot in networking

= Google BigTable uses Bloom filters to
reduce the disk lookups for non-existent
rows or columns.
= Avoiding costly disk lookups considerably

increases the performance of a database
query operation




l Handling Deletions
T

= Bloom filters can handle insertions, but
not deletions.

X; X

Blo[+]oJo[1]of1]ofof1]1]1]of1]x]o]

= If deleting x; means resetting 1’ s to 0’ s,
then deleting x; will “delete” x;.

l Counting Bloom Filters

|
Start with an m bit array, filled with Os.
BfoJofoJofofofofofofoofo]ofo]o]o]

Hash each item x; in S k times. If Hy(x;) = a, add 1 to B[a].
Blo[s[ofo[1]o[2]ofo3]2]1]0f2]1]0]

To delete x; decrement the corresponding counters.
Blo[2]ofofofo[2]ofo3]2]1]of1]1]0]
Can obtain a corresponding Bloom filter by reducing to 0/1.

Blo[+]ofoJofo[+]ofof1[1]1]o]1]1]o]

Counting Bloom Filters: Overflow

= Must choose counters large enough to
avoid overflow
= e.g. for c=8 choose 4 bits per counter
= Average load using k = (In 2) m/n counters is
In 2.

= Probability a counter has load at least 16 is
approximately e'"2 (In 2)'6/16! which is
roughly 6.78x10-17

Bloom filter numerous variations

|
= See papers on website.




