<u>Experts and</u> <u>Multiplicative Weights</u>

slides from Avrim Blum

Simpler question

- We have n "experts".
- One of these is perfect (never makes a mistake). We just don't know which one.
- Can we find a strategy that makes no more than lq(n) mistakes?

Answer: sure. Just take majority vote over all experts that have been correct so far.

- > Each mistake cuts # available by factor of 2.
- >Note: this means ok for n to be very large.
- >What is no expert is perfect?

What if no expert is perfect?

Intuition: Making a mistake doesn't completely disqualify an expert. So, instead of crossing off, just lower its weight.

Weighted Majority Alg:

- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half.

					prediction	correct	
weights	1	1	1	1			
predictions	Y	Y	Y	N	Y	Y	
weights	1	1	1	.5			
predictions	Y	N	N	Y	N	Y	
weights	1	.5	.5	.5			

<u>Analysis: do nearly as well as best</u> <u>expert in hindsight</u>

• M = # mistakes we've made so far.

- W = total weight (starts at n).
- After each mistake, W drops by at least 25%.
 So, after M mistakes, W is at most n(3/4)^M.
- Weight of best expert is (1/2)^m. So,

$$(1/2)^m \leq n(3/4)^M \ (4/3)^M \leq n2^m$$

$$M \leq 2.4(m + \lg n)$$

<u>Analysis</u>

Say at time t we have fraction F_t of weight on experts that made mistake.
So, we have probability F_t of making a mistake, and we remove an εF_t fraction of the total weight.
W_{final} = n(1-ε F₁)(1 - ε F₂)...
ln(W_{final}) = ln(n) + Σ_t [ln(1 - ε F_t)] ≤ ln(n) - ε Σ_t F_t (using ln(1-x) < -x) = ln(n) - ε M. (Σ F_t = E[# mistakes])
If best expert makes m mistakes, then ln(W_{final}) > ln((1-ε)^m).
Now solve: ln(n) - ε M > m ln(1-ε).
M ≤ (-m ln(1 - ε) + ln(n))/ε ≈ (1 + ε/2)m + 1/ε log(n)