Dynamic Programming, I
Intro: Fibonacci & Stamps
W. L. Ruzzo
Dynamic Programming

Outline:

General Principles
Easy Examples – Fibonacci, Licking Stamps
Meatier examples
 Weighted interval scheduling
 String Alignment
 RNA Structure prediction
Maybe others
Some Algorithm Design Techniques, I: Greedy

Greedy algorithms

Usually builds something a piece at a time
Repeatedly make the greedy choice - the one that looks the best right away
e.g. closest pair in TSP search

Usually simple, fast if they work (but often don’t)
Some Algorithm Design Techniques, II: D & C

Divide & Conquer

Reduce problem to one or more sub-problems of the same type, i.e., a recursive solution

Typically, sub-problems are disjoint, and at most a constant fraction of the size of the original

e.g. Mergesort, Quicksort, Binary Search, Karatsuba

Typically, speeds up a polynomial time algorithm
Dynamic Programming

Reduce problem to one or more sub-problems of the same type, i.e., a recursive solution
Useful when the same sub-problems show up repeatedly in the solution
Often very robust to problem re-definition
Sometimes gives exponential speedups
“Dynamic Programming”

Program – A plan or procedure for dealing with some matter

– Webster’s New World Dictionary
Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.
- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
 - “it’s impossible to use dynamic in a pejorative sense”
 - “something not even a Congressman could object to”

A very simple case: Computing Fibonacci Numbers

Recall $F_n = F_{n-1} + F_{n-2}$ and $F_0 = 0$, $F_1 = 1$

Recursive algorithm:

```
Fibo(n)
  if n = 0 then return(0)
  else if n = 1 then return(1)
  else return(Fibo(n-1)+Fibo(n-2))
```
Full call tree

many duplicates ⇒ exponential time!
Two Alternative Fixes

Memoization ("Caching")
Compute on demand, but don’t re-compute:
Save answers from all recursive calls
Before a call, test whether answer saved

Dynamic Programming (not memoized)
Pre-compute, don’t re-compute:
Recursion become iteration (top-down \rightarrow bottom-up)
Anticipate and pre-compute needed values

DP usually cleaner, faster, simpler data structures
Fibonacci - Memoized Version

initialize: \(F[i] \leftarrow \text{undefined for all } i > 1 \)

\[F[0] \leftarrow 0 \]

\[F[1] \leftarrow 1 \]

FiboMemo(n):

\[
\text{if(} F[n] \text{ undefined) } \{
 F[n] \leftarrow \text{FiboMemo}(n-2) + \text{FiboMemo}(n-1)
\}
\]

return(\(F[n] \))
Fibonacci - Dynamic Programming Version

FiboDP(n):

- F[0] ← 0
- F[1] ← 1

for i = 2 to n do
 F[i] ← F[i-1] + F[i-2]
end

return(F[n])

For this problem, suffices to keep only last 2 entries instead of full array, but about the same speed.
Dynamic Programming

Useful when

Same recursive sub-problems occur *repeatedly*

Parameters of these recursive calls anticipated

The solution to whole problem can be solved without knowing the *internal* details of how the sub-problems are solved

“principle of optimality” – more below
Example: Making change

Given:
- Large supply of 1¢, 5¢, 10¢, 25¢, 50¢ coins
- An amount N

Problem: choose fewest coins totaling N

Cashier’s (greedy) algorithm works:
- Give as many as possible of the next biggest denomination
Licking Stamps

Given:

- Large supply of 5¢, 4¢, and 1¢ stamps
- An amount N

Problem: choose fewest stamps totaling N
How to Lick 27¢

<table>
<thead>
<tr>
<th># of 5¢ stamps</th>
<th># of 4¢ stamps</th>
<th># of 1¢ stamps</th>
<th>total number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Morals: Greed doesn’t pay; success of “cashier’s alg” depends on coin denominations
A Simple Algorithm

At most N stamps needed, etc.

\[
\text{for } a = 0, \ldots, N \{ \\
\quad \text{for } b = 0, \ldots, N \{ \\
\quad \quad \text{for } c = 0, \ldots, N \{ \\
\quad \quad \quad \text{if } (5a+4b+c == N \&\& a+b+c \text{ is new min}) \\
\quad \quad \quad \{\text{retain } (a,b,c);\} \} \} \}
\]

output retained triple;

Time: $O(N^3)$

(Not too hard to see some optimizations, but we’re after bigger fish…)
Theorem: If last stamp in an opt sol has value v, then previous stamps are opt sol for $N-v$.

Proof: if not, we could improve the solution for N by using opt for $N-v$.

Alg: for $i = 1$ to n:

$$OPT(i) = \min \begin{cases}
0 & i=0 \\
1 + OPT(i-5) & i \geq 5 \\
1 + OPT(i-4) & i \geq 4 \\
1 + OPT(i-1) & i \geq 1
\end{cases}$$

where $OPT(i) =$ min number of stamps totaling $i \in \mathbb{N}$
New Idea: Recursion

\[OPT(i) = \min \left\{ \begin{array}{ll}
0 & i=0 \\
1 + OPT(i-5) & i \geq 5 \\
1 + OPT(i-4) & i \geq 4 \\
1 + OPT(i-1) & i \geq 1
\end{array} \right\} \]

Time: $> 3^{N/5}$
Another New Idea: Avoid Recomputation

Tabulate values of solved subproblems

Top-down: “memoization”

Bottom up (better):

\[
\text{for } i = 0, \ldots, N \text{ do }
\]

\[
OPT(i) = \min \left\{ \begin{array}{ll}
0 & i = 0 \\
1 + OPT(i-5) & i \geq 5 \\
1 + OPT(i-4) & i \geq 4 \\
1 + OPT(i-1) & i \geq 1 \\
\end{array} \right.
\]

Time: \(O(N) \)
Finding *How Many Stamps*

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT(i)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 + \text{Min}(3, 1, 3) = 2
Finding *Which* Stamps: Trace-Back

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{OPT}(i)$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\text{OPT}(i) = \text{Min}(3, 1, 3) = 1 + \text{Min}(3, 1, 3) = 2$

4¢
Trace-Back

Way 1: tabulate all
 add data structure storing back-pointers indicating which predecessor gave the min. (more space, maybe less time)

Way 2: re-compute just what’s needed

\[
\text{TraceBack}(i):
\begin{align*}
& \text{if } i == 0 \text{ then return; } \\
& \text{for } d \text{ in } \{1, 4, 5\} \text{ do } \\
& \hspace{1em} \text{if } \text{OPT}[i] == 1 + \text{OPT}[i - d] \\
& \hspace{2em} \text{then break; } \\
& \text{print } d; \\
& \text{TraceBack}(i - d);
\end{align*}
\]

\[
\text{OPT}(i) = \min \begin{cases}
0 & i=0 \\
1+\text{OPT}(i-5) & i\geq5 \\
1+\text{OPT}(i-4) & i\geq4 \\
1+\text{OPT}(i-1) & i\geq1 \\
\end{cases}
\]
Complexity Note

O(N) is better than O(N^3) or O(3^{N/5})

But still exponential in input size (log N bits)

(E.g., miserable if N is 64 bits – c\cdot2^{64} steps & 2^{64} memory.)

Note: can do in O(1) for fixed denominations, e.g., 5¢, 4¢, and 1¢ (how?) but not in general. See “NP-Completeness” later.
Elements of Dynamic Programming

What feature did we use?
What should we look for to use again?

“Optimal Substructure”
Optimal solution contains optimal subproblems
A non-example: min (number of stamps mod 2)

“Repeated Subproblems”
The same subproblems arise in various ways